Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Practicality of training a quantum-classical machine in the NISQ era (2401.12089v2)

Published 22 Jan 2024 in quant-ph, physics.app-ph, and physics.atom-ph

Abstract: Advancements in classical computing have significantly enhanced machine learning applications, yet inherent limitations persist in terms of energy, resource and speed. Quantum machine learning algorithms offer a promising avenue to overcome these limitations but poses its own hurdles. This experimental study explores the limits of training a real experimental quantum classical hybrid system using supervised training protocols, on an ion trap platform. Challenges associated with ion trap-coupled classical processors are addressed, highlighting the $robustness$ of the genetic algorithm as a classical optimizer in navigating the noisy channels of NISQ-devices and the complex optimization landscape inherent in binary classification problems with many local minima. We intricately discuss why gradient-based optimizers may not be suitable in the NISQ era through a thorough analysis. These findings contribute insights into the performance of quantum-classical hybrid systems, emphasizing the significance of efficient training strategies and hardware considerations for practical quantum machine learning applications. This work not only advances the understanding of hybrid quantum-classical systems but also underscores the potential impact on real-world challenges through the convergence of quantum and classical computing paradigms operating without the aid of classical simulators.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube