Improved model of large-field inflation with primordial black hole production in Starobinsky-like supergravity (2401.11651v4)
Abstract: A viable model of large-field (chaotic) inflation with efficient production of primordial black holes is proposed in Starobinsky-like (modified) supergravity leading to the "no-scale-type" K\"ahler potential and the Wess-Zumino-type ("renormalizable") superpotential. The cosmological tilts are in good (within $1\sigma$) agreement with Planck measurements of the cosmic microwave background radiation. In addition, the power spectrum of scalar perturbations has a large peak at smaller scales, which leads to a production of primordial black holes from gravitational collapse of large perturbations with the masses about $10{17}$ g. The masses are beyond the Hawking (black hole) evaporation limit of $10{15}$ g, so that those primordial black holes may be viewed as viable candidates for part or the whole of the current dark matter. The parameters of the superpotential were fine-tuned for those purposes, while the cubic term in the superpotential is essential whereas the quadratic term should vanish. The vacuum after inflation (relevant to reheating) is Minkowskian. The energy density fraction of the gravitational waves induced by the production of primordial black holes and their frequency were also calculated in the second order with respect to perturbations.
- A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91 no. 1, (1980) 99 – 102.
- BICEP, Keck Collaboration, P. A. R. Ade et al., “Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season,” Phys. Rev. Lett. 127 no. 15, (2021) 151301, arXiv:2110.00483 [astro-ph.CO].
- M. Tristram et al., “Improved limits on the tensor-to-scalar ratio using BICEP and Planck data,” Phys. Rev. D 105 no. 8, (2022) 083524, arXiv:2112.07961 [astro-ph.CO].
- S. V. Ketov and A. A. Starobinsky, “Inflation and non-minimal scalar-curvature coupling in gravity and supergravity,” JCAP 08 (2012) 022, arXiv:1203.0805 [hep-th].
- S. V. Ketov, “Supergravity and Early Universe: the Meeting Point of Cosmology and High-Energy Physics,” Int. J. Mod. Phys. A 28 (2013) 1330021, arXiv:1201.2239 [hep-th].
- S. V. Ketov, “On the equivalence of Starobinsky and Higgs inflationary models in gravity and supergravity,” J. Phys. A 53 no. 8, (2020) 084001, arXiv:1911.01008 [hep-th].
- S. V. Ketov, “Multi-Field versus Single-Field in the Supergravity Models of Inflation and Primordial Black Holes,” Universe 7 no. 5, (2021) 115.
- J. Ellis, D. V. Nanopoulos, and K. A. Olive, “No-Scale Supergravity Realization of the Starobinsky Model of Inflation,” Phys. Rev. Lett. 111 (2013) 111301, arXiv:1305.1247 [hep-th]. [Erratum: Phys.Rev.Lett. 111, 129902 (2013)].
- S. J. Gates, Jr. and S. V. Ketov, “Superstring-inspired supergravity as the universal source of inflation and quintessence,” Phys. Lett. B 674 (2009) 59–63, arXiv:0901.2467 [hep-th].
- S. V. Ketov and A. A. Starobinsky, “Embedding (R+R2)𝑅superscript𝑅2(R+R^{2})( italic_R + italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )-Inflation into Supergravity,” Phys. Rev. D 83 (2011) 063512, arXiv:1011.0240 [hep-th].
- F. Farakos, A. Kehagias, and A. Riotto, “On the Starobinsky Model of Inflation from Supergravity,” Nucl. Phys. B 876 (2013) 187–200, arXiv:1307.1137 [hep-th].
- S. Cecotti and R. Kallosh, “Cosmological Attractor Models and Higher Curvature Supergravity,” JHEP 05 (2014) 114, arXiv:1403.2932 [hep-th].
- S. Aoki, R. Ishikawa, and S. V. Ketov, “Pole inflation and primordial black holes formation in Starobinsky-like supergravity,” Class. Quant. Grav. 40 no. 6, (2023) 065002, arXiv:2210.10348 [hep-th].
- K.-i. Maeda, “Towards the Einstein-Hilbert Action via Conformal Transformation,” Phys. Rev. D 39 (1989) 3159.
- S. V. Ketov and T. Terada, “Old-minimal supergravity models of inflation,” JHEP 12 (2013) 040, arXiv:1309.7494 [hep-th].
- S. Cecotti, “Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1.,” Phys. Lett. B 190 (1987) 86–92.
- Y. Aldabergenov, A. Addazi, and S. V. Ketov, “Primordial black holes from modified supergravity,” Eur. Phys. J. C 80 no. 10, (2020) 917, arXiv:2006.16641 [hep-th].
- R. Ishikawa and S. V. Ketov, “Exploring the parameter space of modified supergravity for double inflation and primordial black hole formation,” Class. Quant. Grav. 39 no. 1, (2022) 015016, arXiv:2108.04408 [astro-ph.CO].
- A. Gundhi and C. F. Steinwachs, “Scalaron-Higgs inflation,” Nucl. Phys. B 954 (2020) 114989, arXiv:1810.10546 [hep-th].
- A. Gundhi, S. V. Ketov, and C. F. Steinwachs, “Primordial black hole dark matter in dilaton-extended two-field Starobinsky inflation,” Phys. Rev. D 103 no. 8, (2021) 083518, arXiv:2011.05999 [hep-th].
- M. Dias, J. Frazer, and D. Seery, “Computing observables in curved multifield models of inflation—A guide (with code) to the transport method,” JCAP 12 (2015) 030, arXiv:1502.03125 [astro-ph.CO].
- S. R. Geller, W. Qin, E. McDonough, and D. I. Kaiser, “Primordial black holes from multifield inflation with nonminimal couplings,” Phys. Rev. D 106 no. 6, (2022) 063535, arXiv:2205.04471 [hep-th].
- C. Pattison, V. Vennin, D. Wands, and H. Assadullahi, “Ultra-slow-roll inflation with quantum diffusion,” JCAP 04 (2021) 080, arXiv:2101.05741 [astro-ph.CO].
- C. Pahud, M. Kamionkowski, and A. R. Liddle, “Oscillations in the inflaton potential?,” Phys. Rev. D 79 (2009) 083503, arXiv:0807.0322 [astro-ph].
- J. Chluba, J. Hamann, and S. P. Patil, “Features and New Physical Scales in Primordial Observables: Theory and Observation,” Int. J. Mod. Phys. D 24 no. 10, (2015) 1530023, arXiv:1505.01834 [astro-ph.CO].
- J. Fumagalli, S. e. Renaux-Petel, and L. T. Witkowski, “Resonant features in the stochastic gravitational wave background,” JCAP 08 (2021) 059, arXiv:2105.06481 [astro-ph.CO].
- S. Pi, Y.-l. Zhang, Q.-G. Huang, and M. Sasaki, “Scalaron from R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-gravity as a heavy field,” JCAP 05 (2018) 042, arXiv:1712.09896 [astro-ph.CO].
- G. Domènech, “Scalar Induced Gravitational Waves Review,” Universe 7 no. 11, (2021) 398, arXiv:2109.01398 [gr-qc].
- D. Frolovsky and S. V. Ketov, “Fitting Power Spectrum of Scalar Perturbations for Primordial Black Hole Production during Inflation,” Astronomy 2 no. 1, (2023) 47–57, arXiv:2302.06153 [astro-ph.CO].
- J. R. Espinosa, D. Racco, and A. Riotto, “A Cosmological Signature of the SM Higgs Instability: Gravitational Waves,” JCAP 09 (2018) 012, arXiv:1804.07732 [hep-ph].
- V. De Luca, G. Franciolini, and A. Riotto, “NANOGrav Data Hints at Primordial Black Holes as Dark Matter,” Phys. Rev. Lett. 126 no. 4, (2021) 041303, arXiv:2009.08268 [astro-ph.CO].
- NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951 no. 1, (2023) L8, arXiv:2306.16213 [astro-ph.HE].
- E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67 no. 6, (2019) 1900037, arXiv:1903.06239 [hep-th].
- M. Brinkmann, M. Cicoli, and P. Zito, “Starobinsky inflation from string theory?,” JHEP 09 (2023) 038, arXiv:2305.05703 [hep-th].
- D. Lust, J. Masias, B. Muntz, and M. Scalisi, “Starobinsky Inflation in the Swampland,” arXiv:2312.13210 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.