Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Model Predictive Detumbling of Small Satellites with a Single-axis Magnetorquer (2401.11536v1)

Published 21 Jan 2024 in eess.SY and cs.SY

Abstract: Various actuators are used in spacecraft to achieve attitude stabilization, including thrusters, momentum wheels, and control moment gyros. Small satellites, however, have stringent size, weight, and cost constraints, which makes many actuator choices prohibitive. Consequently, magnetic torquers have commonly been applied to spacecraft to attenuate angular rates. Approaches for dealing with under-actuation due to magnetic control torque's dependency on the magnetic field and required high magnetic flux densities have been previously considered. Generally speaking, control of a satellite that becomes under-actuated as a result of on-board failures has been a recurrent theme in the literature. Methods for controlling spacecraft with fewer actuators than degrees of freedom are increasingly in demand due to the increased number of small satellite launches. Magnetic torquers have been extensively investigated for momentum management of spacecraft with momentum wheels and for nutation damping of spin satellites, momentum-biased, and dual-spin satellites. Nonetheless, severely under-actuated small spacecraft that carry only a single-axis magnetic torquer have not been previously treated. This note considers the detumbling of a small spacecraft using only a single-axis magnetic torquer. Even with a three-axis magnetic torquer, the spacecraft is under-actuated, while, in the case of only a single axis magnetic torquer, the problem is considerably more demanding. Our note examines the feasibility of spacecraft attitude control with a single-axis magnetic torquer and possible control methods that can be used.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Jin, J., Park, B., Park, Y., and Tahk, M.-J., “Attitude control of a satellite with redundant thrusters,” Aerospace Science and Technology, Vol. 10, No. 7, 2006, pp. 644 – 651. https://doi.org/10.1016/j.ast.2006.04.005, URL http://www.sciencedirect.com/science/article/pii/S1270963806000514.
  2. Zhang Fan, Shang Hua, Mu Chundi, and Lu Yuchang, “An optimal attitude control of small satellite with momentum wheel and magnetic torquerods,” Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527), Vol. 2, 2002, pp. 1395–1398 vol.2. 10.1109/WCICA.2002.1020810.
  3. Wie, B., “Singularity Escape/Avoidance Steering Logic for Control Moment Gyro Systems,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 948–956. 10.2514/1.10136, URL https://doi.org/10.2514/1.10136.
  4. Avanzini, G., and Giulietti, F., “Magnetic Detumbling of a Rigid Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, 2012, pp. 1326–1334. 10.2514/1.53074, URL https://doi.org/10.2514/1.53074.
  5. Lovera, M., “Magnetic satellite detumbling: The b-dot algorithm revisited,” 2015 American Control Conference (ACC), 2015, pp. 1867–1872. 10.1109/ACC.2015.7171005.
  6. Wood, M., Chen, W., and Fertin, D., “Model predictive control of low earth orbiting spacecraft with magneto-torquers,” 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006, pp. 2908–2913. 10.1109/CACSD-CCA-ISIC.2006.4777100.
  7. Huang, X., and Yan, Y., “Fully Actuated Spacecraft Attitude Control via the Hybrid Magnetocoulombic and Magnetic Torques,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 3358–3360. 10.2514/1.G002925, URL https://doi.org/10.2514/1.G002925.
  8. Horri, N. M., and Palmer, P., “Practical Implementation of Attitude-Control Algorithms for an Underactuated Satellite,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 40–45. 10.2514/1.54075, URL https://doi.org/10.2514/1.54075.
  9. Han, C., and Pechev, A. N., “Underactuated Satellite Attitude Control with Two Parallel CMGs,” 2007 IEEE International Conference on Control and Automation, 2007, pp. 666–670. 10.1109/ICCA.2007.4376438.
  10. Maheshwarappa, M. R., and Bridges, C. P., “Software defined radios for small satellites,” 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2014, pp. 172–179. 10.1109/AHS.2014.6880174.
  11. Trégouët, J., Arzelier, D., Peaucelle, D., Pittet, C., and Zaccarian, L., “Reaction Wheels Desaturation Using Magnetorquers and Static Input Allocation,” IEEE Transactions on Control Systems Technology, Vol. 23, No. 2, 2015, pp. 525–539. 10.1109/TCST.2014.2326037.
  12. Stickler, A. C., and Alfriend, K., “Elementary Magnetic Attitude Control System,” Journal of Spacecraft and Rockets, Vol. 13, No. 5, 1976, pp. 282–287. 10.2514/3.57089, URL https://doi.org/10.2514/3.57089.
  13. Pittelkau, M. E., “Optimal periodic control for spacecraft pointing and attitude determination,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 6, 1993, pp. 1078–1084. 10.2514/3.21130, URL https://doi.org/10.2514/3.21130.
  14. Ruiter, A., “Magnetic Control of Dual-Spin and Bias-Momentum Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 35, 2012, pp. 1158–1168. 10.2514/1.55869.
  15. Henson, M. A., “Nonlinear model predictive control: current status and future directions,” Computers & Chemical Engineering, Vol. 23, No. 2, 1998, pp. 187 – 202. https://doi.org/10.1016/S0098-1354(98)00260-9, URL http://www.sciencedirect.com/science/article/pii/S0098135498002609.
  16. Findeisen, R., Imsland, L., Allgower, F., and Foss, B. A., “State and Output Feedback Nonlinear Model Predictive Control: An Overview,” European Journal of Control, Vol. 9, No. 2, 2003, pp. 190 – 206. https://doi.org/10.3166/ejc.9.190-206, URL http://www.sciencedirect.com/science/article/pii/S0947358003702751.
  17. https://doi.org/10.1016/j.conengprac.2003.12.017, URL http://www.sciencedirect.com/science/article/pii/S0967066103002922, aerospace IFAC 2002.
  18. Psiaki, M. L., “Magnetic Torquer Attitude Control via Asymptotic Periodic Linear Quadratic Regulation,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 386–394. 10.2514/2.4723, URL https://doi.org/10.2514/2.4723.
  19. Xia, X., Guo, C., and Xie, G., “Investigation on magnetic-based attitude de-tumbling algorithm,” Aerospace Science and Technology, Vol. 84, 2019, pp. 1106 – 1115. https://doi.org/10.1016/j.ast.2018.11.035, URL http://www.sciencedirect.com/science/article/pii/S1270963818314640.
  20. Ovchinnikov, M. Y., Roldugin, D., Tkachev, S., and Penkov, V., “B-dot algorithm steady-state motion performance,” Acta Astronautica, Vol. 146, 2018, pp. 66 – 72. https://doi.org/10.1016/j.actaastro.2018.02.019, URL http://www.sciencedirect.com/science/article/pii/S0094576517317332.
  21. Fonod, R., and Gill, E., “Magnetic Detumbling of Fast-tumbling Picosatellites,” Proceedings of 69th International Astronautical Congress, International Astronautical Federation, IAF, France, 2018, pp. 1–11. URL https://www.iac2018.org/, 69th International Astronautical Congress, IAC 2018 ; Conference date: 01-10-2018 Through 05-10-2018.
  22. Reyhanoglu, M., and Drakunov, S., “Attitude stabilization of small satellites using only magnetic actuation,” 2008 34th Annual Conference of IEEE Industrial Electronics, 2008, pp. 103–107. 10.1109/IECON.2008.4757936.
  23. Wisniewski, R., and Blanke, M., “Three-Axis Satellite Attitude Control Based on Magnetic Torquing,” IFAC Proceedings Volumes, Vol. 29, No. 1, 1996, pp. 7618 – 7623. https://doi.org/10.1016/S1474-6670(17)58915-6, URL http://www.sciencedirect.com/science/article/pii/S1474667017589156, 13th World Congress of IFAC, 1996, San Francisco USA, 30 June - 5 July.
  24. Giri, D. K., and Sinha, M., “Magnetocoulombic Attitude Control of Earth-Pointing Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014, pp. 1946–1960. 10.2514/1.G000030, URL https://doi.org/10.2514/1.G000030.
  25. Giri, D. K., and Sinha, M., “Finite-time continuous sliding mode magneto-coulombic satellite attitude control,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 5, 2016, pp. 2397–2412. 10.1109/TAES.2016.140503.
  26. Hermann, R., and Krener, A., “Nonlinear controllability and observability,” IEEE Transactions on Automatic Control, Vol. 22, No. 5, 1977, pp. 728–740. 10.1109/TAC.1977.1101601.
  27. Martinelli, A., “Rank Conditions for Observability and Controllability for Time-varying Nonlinear Systems,” , 2020. URL https://arxiv.org/abs/2003.09721, last accessed 17 January 2021.
  28. Lovera, M., and Astolfi, A., “Spacecraft attitude control using magnetic actuators,” Automatica, Vol. 40, No. 8, 2004, pp. 1405 – 1414. https://doi.org/10.1016/j.automatica.2004.02.022, URL http://www.sciencedirect.com/science/article/pii/S0005109804000767.
  29. Lovera, M., and Astolfi, A., “Global Magnetic Attitude Control of Inertially Pointing Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 1065–1072. 10.2514/1.11844, URL https://doi.org/10.2514/1.11844.
  30. URL https://cds.cern.ch/record/1173048, the book can be consulted by contacting: PH-AID: Wallet, Lionel.
  31. Brockett, R. W., “Asymptotic Stability and Feedback Stabilization,” Differential Geometric Control Theory, 1983, pp. 181–191.
  32. Crouch, P., “Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models,” IEEE Transactions on Automatic Control, Vol. 29, No. 4, 1984, pp. 321–331. 10.1109/TAC.1984.1103519.
  33. Petersen, C. D., Leve, F., and Kolmanovsky, I., “Model Predictive Control of an Underactuated Spacecraft with Two Reaction Wheels,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 320–332. 10.2514/1.G000320, URL https://doi.org/10.2514/1.G000320.
  34. Seguchi, H., and Ohtsuka, T., “Nonlinear receding horizon control of an underactuated hovercraft,” International Journal of Robust and Nonlinear Control, Vol. 13, No. 3-4, 2003, pp. 381–398. 10.1002/rnc.824, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.824.
  35. Huang, M., Nakada, H., Butts, K., and Kolmanovsky, I., “Nonlinear Model Predictive Control of a Diesel Engine Air Path: A Comparison of Constraint Handling and Computational Strategies,” IFAC-PapersOnLine, Vol. 48, No. 23, 2015, pp. 372 – 379. https://doi.org/10.1016/j.ifacol.2015.11.308, URL http://www.sciencedirect.com/science/article/pii/S2405896315025926, 5th IFAC Conference on Nonlinear Model Predictive Control NMPC 2015.
  36. Bryson, A. E., Ho, Y., and Siouris, G. M., “Applied Optimal Control: Optimization, Estimation, and Control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 6, 1979, pp. 366–367. 10.1109/TSMC.1979.4310229.
  37. Ohtsuka, T., and Fujii, H. A., “Real-time optimization algorithm for nonlinear receding-horizon control,” Automatica, Vol. 33, No. 6, 1997, pp. 1147 – 1154. https://doi.org/10.1016/S0005-1098(97)00005-8, URL http://www.sciencedirect.com/science/article/pii/S0005109897000058.
  38. Gillet, N., Barrois, O., and Finlay, C., “Stochastic forecasting of the geomagnetic field from the COV-OBS.x1 geomagnetic field model, and candidate models for IGRF-12,” Earth, Planets and Space, Vol. 67, 2015. 10.1186/s40623-015-0225-z.
  39. Cubas, J., Farrahi, A., and Pindado, S., “Magnetic Attitude Control for Satellites in Polar or Sun-Synchronous Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 10, 2015, pp. 1947–1958. 10.2514/1.G000751, URL https://doi.org/10.2514/1.G000751.
Citations (3)

Summary

We haven't generated a summary for this paper yet.