Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pulse Width Modulation Method Applied to Nonlinear Model Predictive Control on an Under-actuated Small Satellite (2401.11533v1)

Published 21 Jan 2024 in eess.SY and cs.SY

Abstract: Among various satellite actuators, magnetic torquers have been widely equipped for stabilization and attitude control of small satellites. Although magnetorquers are generally used with other actuators, such as momentum wheels, this paper explores a control method where only a magnetic actuation is available. We applied a nonlinear optimal control method, Nonlinear Model Predictive Control (NMPC), to small satellites, employing the generalized minimal residual (GMRES) method, which generates continuous control inputs. Onboard magnetic actuation systems often find it challenging to produce smooth magnetic moments as a control input; hence, we employ the Pulse Width Modulation (PWM) method, which discretizes a control input and reduces the burden on actuators. In our case, the PWM approach discretizes control torques generated by the NMPC scheme. This study's main contributions are investigating the NMPC and the GMRES method applied to small spacecraft and presenting the PWM control system's feasibility.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Jin, J., and Tahk, M.-J., “Attitude control of a satellite with redundant thrusters,” Aerospace Science and Technology - AEROSP SCI TECHNOL, Vol. 10, 2006, pp. 644–651. 10.1016/j.ast.2006.04.005.
  2. Zhang Fan, Shang Hua, Mu Chundi, and Lu Yuchang, “An optimal attitude control of small satellite with momentum wheel and magnetic torquerods,” Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527), Vol. 2, 2002, pp. 1395–1398 vol.2. 10.1109/WCICA.2002.1020810.
  3. Wie, B., “Singularity Escape/Avoidance Steering Logic for Control Moment Gyro Systems,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 948–956. 10.2514/1.10136, URL https://doi.org/10.2514/1.10136.
  4. Wood, M., Chen, W., and Fertin, D., “Model predictive control of low earth orbiting spacecraft with magneto-torquers,” 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006, pp. 2908–2913. 10.1109/CACSD-CCA-ISIC.2006.4777100.
  5. Huang, X., and Yan, Y., “Fully Actuated Spacecraft Attitude Control via the Hybrid Magnetocoulombic and Magnetic Torques,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 3358–3360. 10.2514/1.G002925, URL https://doi.org/10.2514/1.G002925.
  6. Ohtsuka, T., “A continuation/GMRES method for fast computation of nonlinear receding horizon control,” Automatica, Vol. 40, No. 4, 2004, pp. 563 – 574. https://doi.org/10.1016/j.automatica.2003.11.005, URL http://www.sciencedirect.com/science/article/pii/S0005109803003637.
  7. Holtz, J., “Pulsewidth modulation-a survey,” IEEE Transactions on Industrial Electronics, Vol. 39, No. 5, 1992, pp. 410–420.
  8. Massey, T., and Shtessel, Y., “Continuous Traditional and High-Order Sliding Modes for Satellite Formation Control,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 826–831. 10.2514/1.14126, URL https://doi.org/10.2514/1.14126.
  9. Ohtsuka, T., and Fujii, H. A., “Real-time optimization algorithm for nonlinear receding-horizon control,” Automatica, Vol. 33, No. 6, 1997, pp. 1147 – 1154. https://doi.org/10.1016/S0005-1098(97)00005-8, URL http://www.sciencedirect.com/science/article/pii/S0005109897000058.
  10. 10.1002/rnc.824, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.824.
  11. Silani, E., and Lovera, M., “Magnetic spacecraft attitude control: a survey and some new results,” Control Engineering Practice, Vol. 13, No. 3, 2005, pp. 357 – 371. https://doi.org/10.1016/j.conengprac.2003.12.017, URL http://www.sciencedirect.com/science/article/pii/S0967066103002922, aerospace IFAC 2002.
  12. Psiaki, M. L., “Magnetic Torquer Attitude Control via Asymptotic Periodic Linear Quadratic Regulation,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 386–394. 10.2514/2.4723, URL https://doi.org/10.2514/2.4723.
  13. Giri, D. K., and Sinha, M., “Magnetocoulombic Attitude Control of Earth-Pointing Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014a, pp. 1946–1960. 10.2514/1.G000030, URL https://doi.org/10.2514/1.G000030.
  14. Giri, D. K., and Sinha, M., “Fast Terminal Sliding-Mode Fault-Tolerant Attitude Control of Magnetically Actuated Satellite,” Journal of Spacecraft and Rockets, Vol. 56, No. 5, 2019, pp. 1636–1645. 10.2514/1.A34475, URL https://doi.org/10.2514/1.A34475.
  15. Lovera, M., and Astolfi, A., “Spacecraft attitude control using magnetic actuators,” Automatica, Vol. 40, No. 8, 2004, pp. 1405 – 1414. https://doi.org/10.1016/j.automatica.2004.02.022, URL http://www.sciencedirect.com/science/article/pii/S0005109804000767.
  16. Giri, D. K., and Sinha, M., “Magnetocoulombic Attitude Control of Earth-Pointing Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014b, pp. 1946–1960. 10.2514/1.G000030, URL https://doi.org/10.2514/1.G000030.
  17. Giri, D. K., and Sinha, M., “Finite-time continuous sliding mode magneto-coulombic satellite attitude control,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 5, 2016, pp. 2397–2412. 10.1109/TAES.2016.140503.
  18. Weinert, H., “Bryson, A. E./ Ho, Y.-C., Applied Optimal Control, Optimization, Estimation, and Control. New York-London-Sydney-Toronto. John Wiley & Sons. 1975. 481 S., £10.90,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 59, No. 8, 1979, pp. 402–402. 10.1002/zamm.19790590826, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19790590826.
  19. Gillet, N., Barrois, O., and Finlay, C. C., “Stochastic forecasting of the geomagnetic field from the COV-OBS. x1 geomagnetic field model, and candidate models for IGRF-12,” Earth, Planets and Space, Vol. 67, 2015, pp. 1–14.
  20. Cubas, J., Farrahi, A., and Pindado, S., “Magnetic Attitude Control for Satellites in Polar or Sun-Synchronous Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 10, 2015, pp. 1947–1958. 10.2514/1.G000751, URL https://doi.org/10.2514/1.G000751.
Citations (1)

Summary

We haven't generated a summary for this paper yet.