Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Meta-PINN: Meta learning for improved neural network wavefield solutions (2401.11502v1)

Published 21 Jan 2024 in physics.geo-ph

Abstract: Physics-informed neural networks (PINNs) provide a flexible and effective alternative for estimating seismic wavefield solutions due to their typical mesh-free and unsupervised features. However, their accuracy and training cost restrict their applicability. To address these issues, we propose a novel initialization for PINNs based on meta learning to enhance their performance. In our framework, we first utilize meta learning to train a common network initialization for a distribution of medium parameters (i.e. velocity models). This phase employs a unique training data container, comprising a support set and a query set. We use a dual-loop approach, optimizing network parameters through a bidirectional gradient update from the support set to the query set. Following this, we use the meta-trained PINN model as the initial model for a regular PINN training for a new velocity model in which the optimization of the network is jointly constrained by the physical and regularization losses. Numerical results demonstrate that, compared to the vanilla PINN with random initialization, our method achieves a much fast convergence speed, and also, obtains a significant improvement in the results accuracy. Meanwhile, we showcase that our method can be integrated with existing optimal techniques to further enhance its performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.