Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Higher-order Laplacian Renormalization (2401.11298v2)

Published 20 Jan 2024 in cond-mat.stat-mech, cond-mat.dis-nn, and physics.soc-ph

Abstract: We propose a cross-order Laplacian renormalization group (X-LRG) scheme for arbitrary higher-order networks. The renormalization group is a pillar of the theory of scaling, scale-invariance, and universality in physics. An RG scheme based on diffusion dynamics was recently introduced for complex networks with dyadic interactions. Despite mounting evidence of the importance of polyadic interactions, we still lack a general RG scheme for higher-order networks. Our approach uses a diffusion process to group nodes or simplices, where information can flow between nodes and between simplices (higher-order interactions). This approach allows us (i) to probe higher-order structures, defining scale-invariance at various orders, and (ii) to propose a coarse-graining scheme. We demonstrate our approach on controlled synthetic higher-order systems and then use it to detect the presence of order-specific scale-invariant profiles of real-world complex systems from multiple domains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. M. E. Fisher, Reviews of Modern Physics 46, 597 (1974).
  2. Y. Tu, Nature Physics 19, 1536 (2023).
  3. C. Song, S. Havlin, and H. A. Makse, Nature 433, 392 (2005).
  4. H. D. Rozenfeld, C. Song, and H. A. Makse, Physical Review Letters 104, 025701 (2010).
  5. G. García-Pérez, M. Boguñá, and M. Á. Serrano, Nature Physics 14, 583 (2018).
  6. E. Garuccio, M. Lalli, and D. Garlaschelli, arXiv preprint arXiv:2009.11024  (2020), arxiv:2009.11024 .
  7. M. d. C. Loures, A. A. Piovesana, and J. A. Brum, arXiv 10.48550/arxiv.2302.07093 (2023), 2302.07093 .
  8. M. Á. Serrano, D. Krioukov, and M. Boguná, Physical Review Letters 100, 078701 (2008).
  9. L. P. Kadanoff, Physics Physique Fizika 2, 263 (1966).
  10. G. Bianconi and S. N. Dorogovstev, Journal of Statistical Mechanics: Theory and Experiment 2020, 014005 (2020).
  11. S. Mukherjee and J. Steenbergen, Random structures & algorithms 49, 379 (2016).
  12. O. Parzanchevski and R. Rosenthal, Random Structures & Algorithms 50, 225 (2017).
  13. A. Muhammad and M. Egerstedt, in Proc. of 17th International Symposium on Mathematical Theory of Networks and Systems (Citeseer, 2006) pp. 1024–1038.
  14. J. J. Torres and G. Bianconi, Journal of Physics: Complexity 1, 015002 (2020).
  15. I. Iacopini, M. Karsai, and A. Barrat, arXiv preprint arXiv:2306.09967  (2023), arxiv:2306.09967 .
  16. Y. Shang, Proceedings of the Royal Society A 478, 20210564 (2022).
  17. L. Neuhäuser, A. Mellor, and R. Lambiotte, Physical Review E 101, 032310 (2020).
  18. L. Neuhäuser, R. Lambiotte, and M. T. Schaub, Physical Review E 104, 064305 (2021).
  19. R. Sahasrabuddhe, L. Neuhäuser, and R. Lambiotte, Journal of Physics: Complexity 2, 025006 (2021).
  20. P. S. Skardal and A. Arenas, Physical Review Letters 122, 248301 (2019).
  21. M. Lucas, G. Cencetti, and F. Battiston, Physical Review Research 2, 033410 (2020).
  22. Y. Zhang, M. Lucas, and F. Battiston, Nature Communications 14, 1605 (2023).
  23. A. P. Millán, J. J. Torres, and G. Bianconi, Physical Review Letters 124, 218301 (2020).
  24. A. Cheng, P. Sun, and Y. Tian, arXiv preprint arXiv:2305.01895  (2023), arxiv:2305.01895 .
  25. M. Reitz and G. Bianconi, J. Phys. A Math. Theor. 53, 295001 (2020).
  26. H. Sun, R. M. Ziff, and G. Bianconi, Physical Review E 102, 012308 (2020).
  27. B. Eckmann, Commentarii Mathematici Helvetici 17, 240 (1944).
  28. L.-H. Lim, Siam Review 62, 685 (2020).
  29. S. Krishnagopal and G. Bianconi, Physical Review E 104, 064303 (2021).
  30. M. E. Aktas and E. Akbas, in Complex Networks & Their Applications X: Volume 2, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 10 (Springer, 2022) pp. 277–288.
  31. E. Estrada and G. J. Ross, Journal of theoretical biology 438, 46 (2018).
  32. H. Whitney, Hassler Whitney Collected Papers , 61 (1992).
  33. M. De Domenico and J. Biamonte, Physical Review X 6, 041062 (2016).
  34. F. Baccini, F. Geraci, and G. Bianconi, Physical Review E 106, 034319 (2022).
  35. S. L. Braunstein, S. Ghosh, and S. Severini, Annals of Combinatorics 10, 291 (2006).
  36. K. Anand, G. Bianconi, and S. Severini, Physical Review E 83, 036109 (2011).
  37. A. Ghavasieh and M. De Domenico, Journal of Physics: Complexity 3, 011001 (2022).
  38. R. Rammal and G. Toulouse, Journal de Physique Lettres 44, 13 (1983).
  39. J. Ambjørn, J. Jurkiewicz, and R. Loll, Physical Review Letters 95, 171301 (2005).
  40. G. Calcagni, D. Oriti, and J. Thürigen, Classical and Quantum Gravity 31, 135014 (2014).
  41. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Physical Review E 65, 066122 (2002).
  42. G. Bianconi and C. Rahmede, Physical Review E 93, 032315 (2016).
  43. G. Bianconi and C. Rahmede, Scientific reports 7, 41974 (2017).
  44. L. Šubelj and M. Bajec, The European Physical Journal B 81, 353 (2011).
  45. M. E. Newman, Physical Review E 74, 036104 (2006).
  46. J. Leskovec and J. Mcauley, Advances in neural information processing systems 25 (2012).
  47. J. Duch and A. Arenas, Physical Review E 72, 027104 (2005).
  48. A. Beveridge and M. Hunger, Asoiaf (2013).
  49. V. Thibeault, A. Allard, and P. Desrosiers, Nature Physics , 1 (2024).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper introduces a cross-order diffusion process that captures scale-invariant properties in higher-order network structures.
  • It defines novel cross-order Laplacians to extend traditional adjacency notions beyond pairwise interactions.
  • Empirical tests on synthetic and real-world datasets validate its renormalization scheme for uncovering hidden structural dynamics.

An Overview of Higher-order Laplacian Renormalization

The paper "Higher-order Laplacian Renormalization" offers a significant extension to the renormalization group (RG) framework by introducing the cross-order Laplacian renormalization group (X-LRG) scheme tailored for higher-order networks. Higher-order networks encompass interactions that involve more than two entities, which are typically represented as simplices in structures such as simplicial complexes or hypergraphs. This formalism enhances our ability to model complex systems across various disciplines where interaction orders exceed pairwise relationships.

Context and Motivation

The renormalization group is foundational in physics for understanding how properties of systems change with scale, characterized by universal behavior and scale invariance. Traditional applications have been predominantly restricted to dyadic or pairwise interactions as reflected in graphs. However, many real-world systems exhibit polyadic interactions, demanding an RG approach that accounts for higher orders. Prior attempts, such as the Laplacian RG for network structures, primarily considered node-centric diffusion processes and lacked the comprehensive framework necessary for arbitrariness in the order of interactions.

Key Contributions

  • Cross-order Diffusion Process: The authors introduce a sophisticated diffusion process that allows information flow not only between nodes but also between simplices of differing orders through the defined cross-order Laplacians. This process is instrumental in observing and defining scale-invariance within these higher-order constructs.
  • Cross-order Laplacians: These Laplacians extend adjacency notions beyond conventional vertex-edge relationships, facilitating the capture of diffusion dynamics across different simplex orders. The paper defines these matrices in a way analogous to classical graph Laplacians while encapsulating adjacency of kk-simplices via mm-simplices.
  • Informational Notion of Scale-invariance: The research applies the concept of von Neumann entropy in conjunction with entropic susceptibility to discern informational scale invariance, translating these principles to handle diffusion in arbitrary higher-order networks.
  • Renormalization Scheme: The work develops a robust renormalization scheme predicated on cross-order Laplacians. By iteratively partitioning and coarse-graining the simplicial complexes based on diffusion times and scales, this method reveals and exploits scale-invariance properties efficiently.

Empirical and Theoretical Insights

The authors exemplify their approach on both synthetic and real-world datasets:

  • Synthetic Data: The paper employs pseudofractal simplicial complexes to demonstrate the X-LRG's ability to recover self-similar structures and validate the method's accuracy in capturing higher-order scale invariances.
  • Real-world Applications: Applying their method to datasets like network science co-authorship networks, the authors observe varying degrees of higher-order scale-invariance not previously detectable through traditional node-centric analyses. This insight extends the potential for understanding structural organization in complex systems through a higher-order lens.

Implications and Future Directions

The implications of this research are manifold and cross-disciplinary. Practically, the X-LRG method suggests improved approaches for detecting underlying organizational principles in systems modeled by higher-order networks. This can lead to better models in neuroscience, social sciences, and wherever complex polyadic interactions prevail. Theoretically, it stimulates discourse on extending RG concepts to multifaceted network structures, paving the way for future work on simultaneous multicross-order RG frameworks.

In conclusion, this paper charts a significant step in generalizing the RG framework to higher-order networks. Its novel methodology provides a foundation for unveiling the scale-invariant properties of complex structures, offering promising avenues for further exploration in the field of network science and beyond.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.