Higher-order Laplacian Renormalization (2401.11298v2)
Abstract: We propose a cross-order Laplacian renormalization group (X-LRG) scheme for arbitrary higher-order networks. The renormalization group is a pillar of the theory of scaling, scale-invariance, and universality in physics. An RG scheme based on diffusion dynamics was recently introduced for complex networks with dyadic interactions. Despite mounting evidence of the importance of polyadic interactions, we still lack a general RG scheme for higher-order networks. Our approach uses a diffusion process to group nodes or simplices, where information can flow between nodes and between simplices (higher-order interactions). This approach allows us (i) to probe higher-order structures, defining scale-invariance at various orders, and (ii) to propose a coarse-graining scheme. We demonstrate our approach on controlled synthetic higher-order systems and then use it to detect the presence of order-specific scale-invariant profiles of real-world complex systems from multiple domains.
- M. E. Fisher, Reviews of Modern Physics 46, 597 (1974).
- Y. Tu, Nature Physics 19, 1536 (2023).
- C. Song, S. Havlin, and H. A. Makse, Nature 433, 392 (2005).
- H. D. Rozenfeld, C. Song, and H. A. Makse, Physical Review Letters 104, 025701 (2010).
- G. García-Pérez, M. Boguñá, and M. Á. Serrano, Nature Physics 14, 583 (2018).
- E. Garuccio, M. Lalli, and D. Garlaschelli, arXiv preprint arXiv:2009.11024 (2020), arxiv:2009.11024 .
- M. d. C. Loures, A. A. Piovesana, and J. A. Brum, arXiv 10.48550/arxiv.2302.07093 (2023), 2302.07093 .
- M. Á. Serrano, D. Krioukov, and M. Boguná, Physical Review Letters 100, 078701 (2008).
- L. P. Kadanoff, Physics Physique Fizika 2, 263 (1966).
- G. Bianconi and S. N. Dorogovstev, Journal of Statistical Mechanics: Theory and Experiment 2020, 014005 (2020).
- S. Mukherjee and J. Steenbergen, Random structures & algorithms 49, 379 (2016).
- O. Parzanchevski and R. Rosenthal, Random Structures & Algorithms 50, 225 (2017).
- A. Muhammad and M. Egerstedt, in Proc. of 17th International Symposium on Mathematical Theory of Networks and Systems (Citeseer, 2006) pp. 1024–1038.
- J. J. Torres and G. Bianconi, Journal of Physics: Complexity 1, 015002 (2020).
- I. Iacopini, M. Karsai, and A. Barrat, arXiv preprint arXiv:2306.09967 (2023), arxiv:2306.09967 .
- Y. Shang, Proceedings of the Royal Society A 478, 20210564 (2022).
- L. Neuhäuser, A. Mellor, and R. Lambiotte, Physical Review E 101, 032310 (2020).
- L. Neuhäuser, R. Lambiotte, and M. T. Schaub, Physical Review E 104, 064305 (2021).
- R. Sahasrabuddhe, L. Neuhäuser, and R. Lambiotte, Journal of Physics: Complexity 2, 025006 (2021).
- P. S. Skardal and A. Arenas, Physical Review Letters 122, 248301 (2019).
- M. Lucas, G. Cencetti, and F. Battiston, Physical Review Research 2, 033410 (2020).
- Y. Zhang, M. Lucas, and F. Battiston, Nature Communications 14, 1605 (2023).
- A. P. Millán, J. J. Torres, and G. Bianconi, Physical Review Letters 124, 218301 (2020).
- A. Cheng, P. Sun, and Y. Tian, arXiv preprint arXiv:2305.01895 (2023), arxiv:2305.01895 .
- M. Reitz and G. Bianconi, J. Phys. A Math. Theor. 53, 295001 (2020).
- H. Sun, R. M. Ziff, and G. Bianconi, Physical Review E 102, 012308 (2020).
- B. Eckmann, Commentarii Mathematici Helvetici 17, 240 (1944).
- L.-H. Lim, Siam Review 62, 685 (2020).
- S. Krishnagopal and G. Bianconi, Physical Review E 104, 064303 (2021).
- M. E. Aktas and E. Akbas, in Complex Networks & Their Applications X: Volume 2, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 10 (Springer, 2022) pp. 277–288.
- E. Estrada and G. J. Ross, Journal of theoretical biology 438, 46 (2018).
- H. Whitney, Hassler Whitney Collected Papers , 61 (1992).
- M. De Domenico and J. Biamonte, Physical Review X 6, 041062 (2016).
- F. Baccini, F. Geraci, and G. Bianconi, Physical Review E 106, 034319 (2022).
- S. L. Braunstein, S. Ghosh, and S. Severini, Annals of Combinatorics 10, 291 (2006).
- K. Anand, G. Bianconi, and S. Severini, Physical Review E 83, 036109 (2011).
- A. Ghavasieh and M. De Domenico, Journal of Physics: Complexity 3, 011001 (2022).
- R. Rammal and G. Toulouse, Journal de Physique Lettres 44, 13 (1983).
- J. Ambjørn, J. Jurkiewicz, and R. Loll, Physical Review Letters 95, 171301 (2005).
- G. Calcagni, D. Oriti, and J. Thürigen, Classical and Quantum Gravity 31, 135014 (2014).
- S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Physical Review E 65, 066122 (2002).
- G. Bianconi and C. Rahmede, Physical Review E 93, 032315 (2016).
- G. Bianconi and C. Rahmede, Scientific reports 7, 41974 (2017).
- L. Šubelj and M. Bajec, The European Physical Journal B 81, 353 (2011).
- M. E. Newman, Physical Review E 74, 036104 (2006).
- J. Leskovec and J. Mcauley, Advances in neural information processing systems 25 (2012).
- J. Duch and A. Arenas, Physical Review E 72, 027104 (2005).
- A. Beveridge and M. Hunger, Asoiaf (2013).
- V. Thibeault, A. Allard, and P. Desrosiers, Nature Physics , 1 (2024).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.