Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Emergent bright excitons with Rashba spin-orbit coupling in atomic monolayers (2401.11079v2)

Published 20 Jan 2024 in cond-mat.mes-hall

Abstract: Optical properties in van der Waals heterostructures based on monolayer transition-metal dichalcogenides (TMDs), are often dominated by excitonic transitions. While intrinsic spin-orbit coupling (SOC) and an isotropic band structure are typically studied in TMDs, in their heterostructures Rashba SOC and trigonal warping (TW), resulting in bands with threefold anisotropy, are also present. By considering a low-energy effective Hamiltonian and Bethe-Salpeter equation, we study the effect of Rashba SOC and TW on the band structure and absorption spectra. Rashba SOC is predicted to lead to emergent excitons, which are identified as an admixture between 1s and 2p symmetries. In contrast, for experimentally relevant values, TW has only a negligible effect on the absorption spectrum. These findings could guide experimental demonstrations of emergent bright excitons and further studies of the proximity effects in van der Waals heterostructure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. X. Tang and L. Kou, 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259, 210000562 (2022).
  2. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical spectrum of MoS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT: Many-body effects and diversity of exciton states, Phys. Rev. Lett. 111, 216805 (2013).
  3. K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photon. 10, 216 (2016).
  4. M. Bora and P. Deb, Magnetic proximity effect in two-dimensional van der Waals heterostructure, J. Phys. Mater. 4, 034014 (2021).
  5. X. Zhang, W.-Y. Shan, and D. Xiao, Optical selection rule of excitons in gapped chiral fermion systems, Phys. Rev. Lett. 120, 077401 (2018).
  6. D. Wang and X. Zou, Tunable valley band and exciton splitting by interlayer orbital hybridization, npj Comput. Mater. 8, 239 (2022).
  7. D. Bercioux and P. Lucignano, Quantum transport in Rashba spin-orbit materials: a review, Rep. Prog. Phys. 78, 106001 (2015).
  8. I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004).
  9. F. Mahmoudi and R. Asgari, Nonreciprocal photocurrent in the nonlinear response of two-dimensional models, Phys. Rev. B 105, 085403 (2022).
  10. C. F. Klingshrin, Semiconductor Optics, Fourth Edition (Springer, New York, 2012).
  11. T. Ando, T. Nakanishi, and R. Saito, Berry’s phase and absence of back scattering in carbon nanotubes, J. Phys. Soc. Japan 67, 2857 (1998).
  12. M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys. 51, 1 (2002).
  13. H. Rostami, A. G. Moghaddam, and R. Asgari, Effective lattice Hamiltonian for monolayer MoS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT: Tailoring electronic structure with perpendicular electric and magnetic fields, Phys. Rev. B 88, 085440 (2013).
  14. Y. A. Korkmaz, C. Bulutay, and C. Sevik, k⋅⋅\cdot⋅p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles, J. Phys. Chem. C . 125, 7439 (2021).
  15. T. Zhou and I. Žutić, Asymmetry in the magnetic neighbourhood, Nat. Mater. 22, 284 (2023).
  16. W. Hanke and L. J. Sham, Local-field and excitonic effects in the optical spectrum of a covalent crystal, Phys. Rev. B 12, 4501 (1975).
  17. W. Hanke and L. J. Sham, Many-particle effects in the optical spectrum of a semiconductor, Phys. Rev. B 21, 4656 (1980).
  18. M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 4927 (2000).
  19. L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, JETP Lett. 29, 658 (1979).
  20. P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane, Phys. Rev. B 84, 085406 (2011).
  21. T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Phys. Rev. B 88, 045318 (2013).
  22. T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides, Phys. Rev. B 92, 085413 (2015).
  23. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Screening and many-body effects in two-dimensional crystals: Monolayer MoS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, Phys. Rev. B 93, 235435 (2016).
  24. Which is smooth and different from Figs. 3(b) and (c) in Ref. [\rev@citealpQiu2013:PRL].
  25. In Ref. [\rev@citealpQi2015:PRB], λRsubscript𝜆𝑅\lambda_{R}italic_λ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT is obtained through comparing the band gap and splitting from low-energy effective Hamiltonian with first-principles calculations.
  26. G. D. Wilk, R. M. Wallace, and J. M. Anthony, High-κ𝜅\kappaitalic_κ gate dielectrics: Current status and materials properties considerations, J. Appl.Phys. 89, 5243 (2001).
  27. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, Harrow,UK, 2005).
  28. E. I. Rashba, Semiconductors with a loop of extrema, Sov. Phys. Solid. State 2, 1109 (1960).
  29. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th Edition (Springer, Berlin, 2010).
  30. S. Wang, M. S. Ukhtary, and R. Saito, Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides, Phys. Rev. Research 2, 033340 (2020).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube