Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multipole and fracton topological order via gauging foliated SPT phases (2401.10677v1)

Published 19 Jan 2024 in cond-mat.str-el, hep-lat, hep-th, math-ph, math.MP, and quant-ph

Abstract: Spurred by recent development of fracton topological phases, unusual topological phases possessing fractionalized quasi-particles with mobility constraints, the concept of symmetries has been renewed. In particular, in accordance with the progress of multipole symmetries, associated with conservation of multipoles, such as dipole or quadruple moments as well as global charges, there have been proposed topological phases with such symmetries. These topological phases are unconventional as excitations are subject to mobility constraints corresponding to the multipole symmetries. We demonstrate a way to construct such phases by preparing layers of symmetry protected topological (SPT) phases and implementing gauging a global symmetry. After gauging, the statistics of a fractional excitation is altered when crossing the SPT phases, resulting in topological phases with the multipole symmetries. The way we construct the phases allows us to have a comprehensive understanding of field theories of topological phases with the multipole symmetries and other fracton models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett., vol. 48, pp. 1559–1562, 1982.
  2. V. Kalmeyer and R. B. Laughlin, “Equivalence of the resonating-valence-bond and fractional quantum hall states,” Phys. Rev. Lett., vol. 59, pp. 2095–2098, Nov 1987.
  3. X. G. Wen, F. Wilczek, and A. Zee, “Chiral spin states and superconductivity,” Phys. Rev. B, vol. 39, pp. 11413–11423, Jun 1989.
  4. N. Read and S. Sachdev, “Large-n expansion for frustrated quantum antiferromagnets,” Physical review letters, vol. 66, no. 13, p. 1773, 1991.
  5. J. M. Leinaas and J. Myrheim, “On the theory of identical particles,” Il Nuovo Cimento B (1971-1996), vol. 37, no. 1, pp. 1–23, 1977.
  6. R. B. Laughlin, “Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett., vol. 50, pp. 1395–1398, May 1983.
  7. A. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303, no. 1, pp. 2–30, 2003.
  8. E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–4505, 2002.
  9. R. S. K. Mong et al., “Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure,” Phys. Rev. X, vol. 4, no. 1, p. 011036, 2014.
  10. C. Chamon, “Quantum glassiness in strongly correlated clean systems: An example of topological overprotection,” Phys. Rev. Lett., vol. 94, p. 040402, Jan 2005.
  11. J. Haah, “Local stabilizer codes in three dimensions without string logical operators,” Phys. Rev. A, vol. 83, p. 042330, Apr 2011.
  12. S. Vijay, J. Haah, and L. Fu, “Fracton topological order, generalized lattice gauge theory, and duality,” Phys. Rev. B, vol. 94, p. 235157, Dec 2016.
  13. T. Griffin, K. T. Grosvenor, P. Hořava, and Z. Yan, “Scalar field theories with polynomial shift symmetries,” Communications in Mathematical Physics, vol. 340, pp. 985–1048, 2015.
  14. M. Pretko, “The Fracton Gauge Principle,” Phys. Rev. B, vol. 98, no. 11, p. 115134, 2018.
  15. A. Gromov, “Towards classification of fracton phases: The multipole algebra,” Phys. Rev. X, vol. 9, p. 031035, Aug 2019.
  16. H. Ma, M. Hermele, and X. Chen, “Fracton topological order from the higgs and partial-confinement mechanisms of rank-two gauge theory,” Phys. Rev. B, vol. 98, p. 035111, Jul 2018.
  17. P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “Global dipole symmetry, compact lifshitz theory, tensor gauge theory, and fractons,” Phys. Rev. B, vol. 106, p. 045112, Jul 2022.
  18. A. Jain and K. Jensen, “Fractons in curved space,” SciPost Phys., vol. 12, no. 4, p. 142, 2022.
  19. S. D. Pace and X.-G. Wen, “Position-dependent excitations and uv/ir mixing in the 𝕫Nsubscript𝕫𝑁{\mathbb{z}}_{N}blackboard_z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT rank-2 toric code and its low-energy effective field theory,” Phys. Rev. B, vol. 106, p. 045145, 2022.
  20. Y.-T. Oh, J. Kim, E.-G. Moon, and J. H. Han, “Rank-2 toric code in two dimensions,” Physical Review B, vol. 105, no. 4, p. 045128, 2022.
  21. H. Ebisu and B. Han, “Anisotropic higher rank ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT topological phases on graphs,” SciPost Phys., vol. 14, p. 106, 2023.
  22. H. Ebisu, “Symmetric higher rank topological phases on generic graphs,” Phys. Rev. B, vol. 107, p. 125154, Mar 2023.
  23. X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science, vol. 338, no. 6114, pp. 1604–1606, 2012.
  24. X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Phys. Rev. B, vol. 87, p. 155114, Apr 2013.
  25. X. Chen, Y.-M. Lu, and A. Vishwanath, “Symmetry-protected topological phases from decorated domain walls,” Nature communications, vol. 5, no. 1, p. 3507, 2014.
  26. R. Dijkgraaf and E. Witten, “Topological gauge theories and group cohomology,” Communications in Mathematical Physics, vol. 129, no. 2, pp. 393 – 429, 1990.
  27. M. d. W. Propitius, “Topological interactions in broken gauge theories,” arXiv preprint hep-th/9511195, 1995.
  28. M. Levin and Z.-C. Gu, “Braiding statistics approach to symmetry-protected topological phases,” Phys. Rev. B, vol. 86, p. 115109, Sep 2012.
  29. J. C. Wang, Z.-C. Gu, and X.-G. Wen, “Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond,” Phys. Rev. Lett., vol. 114, p. 031601, Jan 2015.
  30. C. Wang and M. Levin, “Topological invariants for gauge theories and symmetry-protected topological phases,” Phys. Rev. B, vol. 91, p. 165119, Apr 2015.
  31. H. Ebisu, M. Honda, and T. Nakanishi, “Foliated BF theories and Multipole symmetries,” arXiv e-prints, p. arXiv:2310.06701, Oct. 2023.
  32. D. Aasen, D. Bulmash, A. Prem, K. Slagle, and D. J. Williamson, “Topological defect networks for fractons of all types,” Phys. Rev. Res., vol. 2, p. 043165, Oct 2020.
  33. K. Slagle, D. Aasen, and D. Williamson, “Foliated field theory and string-membrane-net condensation picture of fracton order,” SciPost Phys., vol. 6, p. 043, 2019.
  34. K. Slagle, “Foliated quantum field theory of fracton order,” Phys. Rev. Lett., vol. 126, p. 101603, Mar 2021.
  35. K. Ohmori and S. Shimamura, “Foliated-exotic duality in fractonic BF theories,” SciPost Phys., vol. 14, no. 6, p. 164, 2023.
  36. R. C. Spieler, “Exotic field theories for (hybrid) fracton phases from imposing constraints in foliated field theory,” JHEP, vol. 09, p. 178, 2023.
  37. W. Cao and Q. Jia, “Symmetry TFT for Subsystem Symmetry,” arXiv preprint arXiv:2310.01474, 2023.
  38. L. Bhardwaj, S. Schäfer-Nameki, and A. Tiwari, “Unifying constructions of non-invertible symmetries,” SciPost Phys., vol. 15, p. 122, 2023.
  39. N. Seiberg and S.-H. Shao, “Exotic symmetries, duality, and fractons in 2+ 1-dimensional quantum field theory,” SciPost Physics, vol. 10, no. 2, p. 027, 2021.
  40. Y. Hirono, M. You, S. Angus, and G. Y. Cho, “A symmetry principle for gauge theories with fractons,” arXiv preprint arXiv:2207.00854, 2022.
  41. P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “A modified Villain formulation of fractons and other exotic theories,” J. Math. Phys., vol. 62, no. 10, p. 102301, 2021.
  42. B. Yoshida, “Gapped boundaries, group cohomology and fault-tolerant logical gates,” Annals of Physics, vol. 377, pp. 387–413, 2017.
  43. M. Pretko, “Generalized electromagnetism of subdimensional particles: A spin liquid story,” Phys. Rev. B, vol. 96, p. 035119, Jul 2017.
  44. A. Paramekanti, L. Balents, and M. P. A. Fisher, “Ring exchange, the exciton bose liquid, and bosonization in two dimensions,” Phys. Rev. B, vol. 66, p. 054526, Aug 2002.
  45. N. Seiberg, “Field Theories With a Vector Global Symmetry,” SciPost Phys., vol. 8, no. 4, p. 050, 2020.
  46. A. Kapustin and N. Seiberg, “Coupling a qft to a tqft and duality,” Journal of High Energy Physics, vol. 2014, no. 4, pp. 1–45, 2014.
  47. R. Raussendorf, S. Bravyi, and J. Harrington, “Long-range quantum entanglement in noisy cluster states,” Physical Review A, vol. 71, no. 6, p. 062313, 2005.
  48. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized global symmetries,” Journal of High Energy Physics, vol. 2015, no. 2, pp. 1–62, 2015.
  49. A. Kapustin and R. Thorngren, “Higher symmetry and gapped phases of gauge theories,” Algebra, Geometry, and Physics in the 21st Century: Kontsevich Festschrift, pp. 177–202, 2017.
  50. M. Levin and X.-G. Wen, “Detecting topological order in a ground state wave function,” Phys. Rev. Lett., vol. 96, p. 110405, Mar 2006.
  51. A. Kitaev and J. Preskill, “Topological entanglement entropy,” Phys. Rev. Lett., vol. 96, p. 110404, Mar 2006.
  52. H. Ebisu, “Entanglement entropy of higher rank topological phases,” arXiv:2302.11468 (2023).
  53. J. Kim, Y.-T. Oh, D. Bulmash, and J. H. Han, “Unveiling UV/IR Mixing via Symmetry Defects: A View from Topological Entanglement Entropy,” arXiv e-prints, p. arXiv:2310.09425, Oct. 2023.
  54. X. Wen, H. He, A. Tiwari, Y. Zheng, and P. Ye, “Entanglement entropy for (3+1)-dimensional topological order with excitations,” Phys. Rev. B, vol. 97, p. 085147, Feb 2018.
  55. Y. A. Lee and G. Vidal, “Entanglement negativity and topological order,” Phys. Rev. A, vol. 88, p. 042318, Oct 2013.
  56. C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group Global Symmetries,” JHEP, vol. 02, p. 184, 2019.
  57. F. J. Burnell, T. Devakul, P. Gorantla, H. T. Lam, and S.-H. Shao, “Anomaly inflow for subsystem symmetries,” Phys. Rev. B, vol. 106, no. 8, p. 085113, 2022.
  58. S. Yamaguchi, “Gapless edge modes in (4+1)-dimensional topologically massive tensor gauge theory and anomaly inflow for subsystem symmetry,” PTEP, vol. 2022, no. 3, p. 033B08, 2022.
  59. M. Honda and T. Nakanishi, “Scalar, fermionic and supersymmetric field theories with subsystem symmetries in d + 1 dimensions,” JHEP, vol. 03, p. 188, 2023.
  60. W. Cao, L. Li, M. Yamazaki, and Y. Zheng, “Subsystem non-invertible symmetry operators and defects,” SciPost Phys., vol. 15, no. 4, p. 155, 2023.
  61. X. Huang, “A Chern-Simons theory for dipole symmetry,” SciPost Phys., vol. 15, no. 4, p. 153, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.