A symmetry principle for gauge theories with fractons (2207.00854v3)
Abstract: Fractonic phases are new phases of matter that host excitations with restricted mobility. We show that a certain class of gapless fractonic phases are realized as a result of spontaneous breaking of continuous higher-form symmetries whose conserved charges do not commute with spatial translations. We refer to such symmetries as nonuniform higher-form symmetries. These symmetries fall within the standard definition of higher-form symmetries in quantum field theory, and the corresponding symmetry generators are topological. Worldlines of particles are regarded as the charged objects of 1-form symmetries, and mobility restrictions can be implemented by introducing additional 1-form symmetries whose generators do not commute with spatial translations. These features are realized by effective field theories associated with spontaneously broken nonuniform 1-form symmetries. At low energies, the theories reduce to known higher-rank gauge theories such as scalar/vector charge gauge theories, and the gapless excitations in these theories are interpreted as Nambu--Goldstone modes for higher-form symmetries. Due to the nonuniformity of the symmetry, some of the modes acquire a gap, which is the higher-form analogue of the inverse Higgs mechanism of spacetime symmetries. The gauge theories have emergent nonuniform magnetic symmetries, and some of the magnetic monopoles become fractonic. We identify the 't~Hooft anomalies of the nonuniform higher-form symmetries and the corresponding bulk symmetry-protected topological phases. By this method, the mobility restrictions are fully determined by the choice of the commutation relations of charges with translations. This approach allows us to view existing (gapless) fracton models such as the scalar/vector charge gauge theories and their variants from a unified perspective and enables us to engineer theories with desired mobility restrictions.
- R. M. Nandkishore and M. Hermele, Fractons, Annual Review of Condensed Matter Physics 10, 295 (2019), https://doi.org/10.1146/annurev-conmatphys-031218-013604 .
- M. Pretko, X. Chen, and Y. You, Fracton Phases of Matter, Int. J. Mod. Phys. A 35, 2030003 (2020), arXiv:2001.01722 [cond-mat.str-el] .
- C. Xu, Novel algebraic boson liquid phase with soft graviton excitations, arXiv preprint cond-mat/0602443 (2006a).
- C. Xu, Gapless bosonic excitation without symmetry breaking: An algebraic spin liquid with soft gravitons, Physical Review B 74, 10.1103/physrevb.74.224433 (2006b).
- A. Rasmussen, Y.-Z. You, and C. Xu, Stable gapless bose liquid phases without any symmetry (2016).
- M. Pretko, Subdimensional Particle Structure of Higher Rank U(1) Spin Liquids, Phys. Rev. B 95, 115139 (2017a), arXiv:1604.05329 [cond-mat.str-el] .
- M. Pretko, Generalized Electromagnetism of Subdimensional Particles: A Spin Liquid Story, Phys. Rev. B 96, 035119 (2017b), arXiv:1606.08857 [cond-mat.str-el] .
- D. Bulmash and M. Barkeshli, Generalized U(1)𝑈1U(1)italic_U ( 1 ) Gauge Field Theories and Fractal Dynamics (2018a), arXiv:1806.01855 [cond-mat.str-el] .
- J. Wang and K. Xu, Higher-Rank Tensor Field Theory of Non-Abelian Fracton and Embeddon, Annals Phys. 424, 168370 (2021), arXiv:1909.13879 [hep-th] .
- V. B. Shenoy and R. Moessner, (k,n)𝑘𝑛(k,n)( italic_k , italic_n )-fractonic maxwell theory, Phys. Rev. B 101, 085106 (2020).
- A. Gromov, Towards classification of Fracton phases: the multipole algebra, Phys. Rev. X 9, 031035 (2019), arXiv:1812.05104 [cond-mat.str-el] .
- O. Dubinkin, A. Rasmussen, and T. L. Hughes, Higher-form Gauge Symmetries in Multipole Topological Phases, Annals Phys. 422, 168297 (2020a), arXiv:2007.05539 [cond-mat.str-el] .
- O. Dubinkin, A. Rasmussen, and T. L. Hughes, Higher-form gauge symmetries in multipole topological phases, Annals of Physics 422, 168297 (2020b).
- M. Pretko and L. Radzihovsky, Fracton-Elasticity Duality, Phys. Rev. Lett. 120, 195301 (2018a), arXiv:1711.11044 [cond-mat.str-el] .
- M. Pretko and L. Radzihovsky, Symmetry Enriched Fracton Phases from Supersolid Duality, Phys. Rev. Lett. 121, 235301 (2018b), arXiv:1808.05616 [cond-mat.str-el] .
- D. X. Nguyen, A. Gromov, and S. Moroz, Fracton-elasticity duality of two-dimensional superfluid vortex crystals: defect interactions and quantum melting, SciPost Phys. 9, 076 (2020), arXiv:2005.12317 [cond-mat.quant-gas] .
- L. Radzihovsky and M. Hermele, Fractons from vector gauge theory, Phys. Rev. Lett. 124, 050402 (2020), arXiv:1905.06951 [cond-mat.str-el] .
- A. Gromov and P. Surówka, On duality between Cosserat elasticity and fractons, SciPost Phys. 8, 065 (2020), arXiv:1908.06984 [cond-mat.str-el] .
- E. Ivanov and V. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor.Mat.Fiz. 25, 164 (1975).
- I. Low and A. V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys.Rev.Lett. 88, 101602 (2002), arXiv:hep-th/0110285 [hep-th] .
- J. McGreevy, Generalized Symmetries in Condensed Matter (2022), arXiv:2204.03045 [cond-mat.str-el] .
- B. C. Rayhaun and D. J. Williamson, Higher-Form Subsystem Symmetry Breaking: Subdimensional Criticality and Fracton Phase Transitions (2021), arXiv:2112.12735 [cond-mat.str-el] .
- M. Qi, L. Radzihovsky, and M. Hermele, Fracton phases via exotic higher-form symmetry-breaking, Annals Phys. 424, 168360 (2021), arXiv:2010.02254 [cond-mat.str-el] .
- D. J. Williamson, Z. Bi, and M. Cheng, Fractonic matter in symmetry-enriched u (1) gauge theory, Physical Review B 100, 125150 (2019).
- T. Brauner, Noether currents of locally equivalent symmetries, Phys. Scripta 95, 035004 (2020), arXiv:1910.12224 [hep-th] .
- Y. Hirono and Y.-H. Qi, Effective field theories for gapless phases with fractons via a coset construction, Phys. Rev. B 105, 205109 (2022), arXiv:2110.13066 [cond-mat.str-el] .
- E. Lake, Higher-form symmetries and spontaneous symmetry breaking (2018), arXiv:1802.07747 [hep-th] .
- F. Peña Benitez, Fractons, Symmetric Gauge Fields and Geometry (2021), arXiv:2107.13884 [cond-mat.str-el] .
- C. Córdova, T. T. Dumitrescu, and K. Intriligator, Exploring 2-Group Global Symmetries, JHEP 02, 184, arXiv:1802.04790 [hep-th] .
- A. Caddeo, C. Hoyos, and D. Musso, Emergent dipole gauge fields and fractons, Phys. Rev. D 106, L111903 (2022), arXiv:2206.12877 [cond-mat.str-el] .
- Y. Hidaka, Y. Hirono, and R. Yokokura, Counting Nambu-Goldstone Modes of Higher-Form Global Symmetries, Phys. Rev. Lett. 126, 071601 (2021), arXiv:2007.15901 [hep-th] .
- K. Slagle, D. Aasen, and D. Williamson, Foliated Field Theory and String-Membrane-Net Condensation Picture of Fracton Order, SciPost Phys. 6, 043 (2019), arXiv:1812.01613 [cond-mat.str-el] .
- J. Cheeger and J. Simons, Differential characters and geometric invariants, in Geometry and topology (Springer, 1985) pp. 50–80.
- D. S. Freed, Dirac charge quantization and generalized differential cohomology (2000) arXiv:hep-th/0011220 .
- D. S. Freed, G. W. Moore, and G. Segal, The Uncertainty of Fluxes, Commun. Math. Phys. 271, 247 (2007), arXiv:hep-th/0605198 .
- C.-T. Hsieh, Y. Tachikawa, and K. Yonekura, Anomaly Inflow and p-Form Gauge Theories, Commun. Math. Phys. 391, 495 (2022), arXiv:2003.11550 [hep-th] .
- K. Slagle, Foliated Quantum Field Theory of Fracton Order, Phys. Rev. Lett. 126, 101603 (2021), arXiv:2008.03852 [hep-th] .
- Y. You, F. J. Burnell, and T. L. Hughes, Multipolar Topological Field Theories: Bridging Higher Order Topological Insulators and Fractons, Phys. Rev. B 103, 245128 (2021b), arXiv:1909.05868 [cond-mat.str-el] .
- D. Bulmash and M. Barkeshli, Higgs mechanism in higher-rank symmetric u(1) gauge theories, Phys. Rev. B 97, 235112 (2018b).
- C. Stahl, E. Lake, and R. Nandkishore, Spontaneous breaking of multipole symmetries, Phys. Rev. B 105, 155107 (2022).
- S. Grozdanov, D. M. Hofman, and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95, 096003 (2017), arXiv:1610.07392 [hep-th] .
- P. Glorioso and D. T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries (2018), arXiv:1811.04879 [hep-th] .
- J. Armas and A. Jain, Magnetohydrodynamics as superfluidity, Phys. Rev. Lett. 122, 141603 (2019), arXiv:1808.01939 [hep-th] .
- A. Jain and K. Jensen, Fractons in curved space, SciPost Phys. 12, 142 (2022), arXiv:2111.03973 [hep-th] .
- M. Pretko, The Fracton Gauge Principle, Phys. Rev. B 98, 115134 (2018), arXiv:1807.11479 [cond-mat.str-el] .