Photoproduction of lepton pair in ultra-relativistic heavy-ion collisions (2401.10645v2)
Abstract: Dilepton production provides a unique probe of the strong electromagnetic field produced in heavy-ion collisions. To map out the behavior of its transverse momentum broadening, we present a theoretical model based on the equivalent photon approximation, and then we update it to make direct comparisons with the recent experimental measurements. We find that the model calculations can describe well, not only the average transverse momentum squared of $e{+}e{-}$ pairs in Au--Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV, but also the acoplanarity of $\mu{+}\mu{-}$ pairs in Pb--Pb collisions at$\sqrt{s_{\rm NN}}=5.02$ TeV. Furthermore, the model predictions are also able to reproduce the measured dependencies of the pair mass and the transverse momentum squared.
- E. V. Shuryak, Physics Reports 61, 71 (1980).
- M. Gyulassy and L. McLerran, Nucl. Phys. A750, 30 (2005).
- E. Shuryak, Nucl. Phys. A750, 64 (2005).
- G. Agakichiev et al. (CERES Collaboration), Phys. Rev. Lett. 75, 1272 (1995).
- D. Adamová et al. (CERES/NA45 Collaboration), Phys. Rev. Lett. 91, 042301 (2003).
- R. Arnaldi et al. (NA60 Collaboration), Phys. Rev. Lett. 96, 162302 (2006).
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 113, 022301 (2014).
- L. Adamczyk et al., Physics Letters B 750, 64 (2015).
- A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 93, 014904 (2016).
- G. Breit and J. A. Wheeler, Phys. Rev. 46, 1087 (1934).
- J. S. Toll, PhD Thesis (1952).
- E. Fermi, Z. Phys. 29, 315 (1924).
- E. J. Williams, Phys. Rev. 45, 729 (1934).
- C. F. v. Weizsa¨¨a\rm\ddot{a}over¨ start_ARG roman_a end_ARGcker, Z. Physik 88 (1934).
- C. A. Bertulani and G. Baur, Physics Reports 163, 299 (1988).
- C. Li, J. Zhou and Y. J. Zhou, Physics Letters B 795, 576 (2019).
- L. A. Harland-Lang, V. A. Khoze and M. G. Ryskin, European Physical Journal C 79, 39 (2019).
- J. Adam et al. (STAR Collaboration), Phys. Rev. C 70, 031902 (2004).
- J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 121, 132301 (2018).
- J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 127, 052302 (2021).
- A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. Lett. 127, 122001 (2021).
- S. Acharya et al. (ALICE Collaboration), JHEP 06, 024 (2023), arXiv:2204.11732 [nucl-ex] .
- M. Aabound et al. (ATLAS Collaboration), Phys. Rev. Lett. 121, 212301 (2018).
- G. And et al. (ATLAS Collaboration), Phys. Rev. C 107, 054907 (2023).
- R. J. Wang, S. Pu and Q. Wang, Phys. Rev. D 104, 056011 (2021).
- W. Zha and Z. Tang, JHEP 08, 083 (2021), arXiv:2103.04605 [hep-ph] .
- S. R. Klein, Phys. Rev. C 97, 054903 (2018).
- W. Magnus and F. Oberhettinger, “Formulas and theorems for the special functions of mathematical physics,” New York: Chelsea Publishing Company. 172 p. (1949). (1949).
- W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907 (2012).
- (2022), arXiv:2204.10684 [nucl-ex] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.