Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Energy-momentum tensor of the dilute (3+1)D Glasma (2401.10320v2)

Published 18 Jan 2024 in hep-ph and nucl-th

Abstract: We present a succinct formulation of the energy-momentum tensor of the Glasma characterizing the initial color fields in relativistic heavy-ion collisions in the Color Glass Condensate effective theory. We derive concise expressions for the (3+1)D dynamical evolution of symmetric nuclear collisions in the weak field approximation employing a generalized McLerran-Venugopalan model with non-trivial longitudinal correlations. Utilizing Monte Carlo integration, we calculate in unprecedented detail non-trivial rapidity profiles of early-time observables at RHIC and LHC energies, including transverse energy densities and eccentricities. For our setup with broken boost invariance, we carefully discuss the placement of the origin of the Milne frame and interpret the components of the energy-momentum tensor. We find longitudinal flow that deviates from standard Bjorken flow in the (3+1)D case and provide a geometric interpretation of this effect. Furthermore, we observe a universal shape in the flanks of the rapidity profiles regardless of collision energy and predict that limiting fragmentation should also hold at LHC energies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. arXiv:1301.2826, doi:10.1146/annurev-nucl-102212-170540.
  2. arXiv:1301.5893, doi:10.1142/S0217751X13400113.
  3. arXiv:1802.04801, doi:10.1146/annurev-nucl-101917-020852.
  4. arXiv:1304.3634, doi:10.1088/1742-6596/455/1/012044.
  5. doi:10.1038/s41567-019-0611-8.
  6. arXiv:2010.15134, doi:10.1103/PhysRevC.103.054909.
  7. arXiv:2011.01430, doi:10.1103/PhysRevC.103.054904.
  8. arXiv:1002.0333, doi:10.1146/annurev.nucl.010909.083629.
  9. arXiv:1211.3327, doi:10.1142/S0217751X13300019.
  10. arXiv:hep-ph/0602189, doi:10.1016/j.nuclphysa.2006.04.001.
  11. arXiv:nucl-ex/0701025, doi:10.1146/annurev.nucl.57.090506.123020.
  12. arXiv:1202.6646, doi:10.1103/PhysRevLett.108.252301.
  13. arXiv:1206.6805, doi:10.1103/PhysRevC.86.034908.
  14. arXiv:1209.6330, doi:10.1103/PhysRevLett.110.012302.
  15. arXiv:1503.01692, doi:10.1103/PhysRevC.92.034911.
  16. arXiv:1709.02301, doi:10.1140/epjc/s10052-018-5605-7.
  17. arXiv:1605.07158, doi:10.1103/PhysRevC.94.044907.
  18. arXiv:1807.05409, doi:10.1016/j.nuclphysa.2018.08.014.
  19. arXiv:2306.04896, doi:10.1103/PhysRevC.108.064910.
  20. arXiv:1605.07184, doi:10.1103/PhysRevD.94.014020.
  21. arXiv:1703.00017, doi:10.1016/j.physletb.2017.05.032.
  22. arXiv:1804.01995, doi:10.1140/epjc/s10052-018-6323-x.
  23. arXiv:2009.02044, doi:10.1140/epja/s10050-020-00241-6.
  24. arXiv:2010.11172, doi:10.1103/PhysRevD.103.014003.
  25. arXiv:2308.15269, doi:10.1103/PhysRevD.108.114008.
  26. arXiv:2401.04296.
  27. arXiv:1004.0805, doi:10.1103/PhysRevC.82.044904.
  28. arXiv:1509.04103, doi:10.1016/j.physletb.2015.11.063.
  29. arXiv:1509.04124, doi:10.1103/PhysRevC.92.054913.
  30. arXiv:1512.01538, doi:10.1103/PhysRevLett.116.212301.
  31. arXiv:2203.04685, doi:10.1103/PhysRevC.105.064905.
  32. arXiv:2109.05028, doi:10.1103/PhysRevD.104.114040.
  33. arXiv:2212.09363, doi:10.1051/epjconf/202227405017.
  34. arXiv:hep-ph/0007133, doi:10.1103/PhysRevD.62.114023.
  35. arXiv:1210.8107, doi:10.1103/PhysRevD.87.045013.
  36. arXiv:1311.3390, doi:10.1103/PhysRevC.89.034902.
  37. arXiv:1404.2219, doi:10.1007/JHEP07(2014)068.
  38. arXiv:1505.01400, doi:10.1007/JHEP01(2016)114.
  39. arXiv:2102.09993, doi:10.1103/PhysRevD.104.014011.
  40. arXiv:2302.02236, doi:10.1103/PhysRevD.107.094004.
  41. arXiv:hep-ph/9309289, doi:10.1103/PhysRevD.49.2233.
  42. arXiv:hep-ph/9311205, doi:10.1103/PhysRevD.49.3352.
  43. arXiv:hep-ph/0212123, doi:10.1016/S0375-9474(03)01477-5.
  44. arXiv:0711.2364, doi:10.1103/PhysRevD.77.074005.
  45. arXiv:0803.0410, doi:10.1016/j.nuclphysa.2008.05.016.
  46. arXiv:1511.04131, doi:10.1140/epja/i2016-16097-x.
  47. arXiv:1610.09673, doi:10.1051/epjconf/201714105003.
  48. arXiv:1704.07680, doi:10.1016/j.nuclphysbps.2017.05.108.
  49. arXiv:hep-ph/0303076, doi:10.1103/PhysRevC.67.054903.
  50. arXiv:hep-ph/0606207, doi:10.1016/j.physletb.2006.10.017.
  51. doi:10.1007/BF01410446.
  52. doi:10.1103/PhysRev.188.2159.
  53. doi:10.1103/PhysRevD.22.13.
  54. arXiv:nucl-ex/0409021, doi:10.1103/PhysRevC.72.031901.
  55. arXiv:nucl-ex/0112001, doi:10.1103/PhysRevLett.88.202301.
  56. arXiv:nucl-ex/0210015, doi:10.1103/PhysRevLett.91.052303.
  57. arXiv:2308.11713.
  58. arXiv:2201.08864, doi:10.1103/PhysRevD.105.094023.
  59. arXiv:2106.08125, doi:10.1103/PhysRevC.104.054908.
  60. arXiv:1506.06647, doi:10.1103/PhysRevLett.115.182301.
  61. arXiv:1605.04287, doi:10.1007/JHEP08(2016)171.
  62. arXiv:1805.00961, doi:10.1103/PhysRevC.99.034910.
  63. arXiv:1009.3244, doi:10.1103/PhysRevLett.106.042301.
  64. arXiv:2001.08636, doi:10.1016/j.nuclphysa.2020.121771.
  65. arXiv:1407.8458, doi:10.1016/j.physletb.2014.10.068.
  66. arXiv:1603.04349, doi:10.1103/PhysRevLett.117.052301.
  67. arXiv:2101.03791, doi:10.1103/PhysRevD.103.094025.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.