Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expansions for random walks conditioned to stay positive (2401.09929v1)

Published 18 Jan 2024 in math.PR

Abstract: We consider a one-dimensional random walk $S_n$ with i.i.d. increments with zero mean and finite variance. We study the asymptotic expansion for the tail distribution $\mathbf P(\tau_x>n)$ of the first passage times $\tau_x:=\inf{n\ge1:x+S_n\le0}$ for $\ x\ge0.$ We also derive asymptotic expansion for local probabilities $\mathbf P(S_n=x,\tau_0>n)$. Studying the asymptotic expansions we obtain a sequence of discrete polyharmonic functions and obtain analogues of renewal theorem for them.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. On conditioning a random walk to stay nonnegative. Ann. Probab., 22:2152–2167, 1994.
  2. Regular variation. Cambridge University Press, 1987.
  3. Borovkov, A.A. New limit theorems in boundary-value problems for sums of independent terms. Siberian Math. J. 3:645–694, 1962.
  4. Borovkov, A.A. Probability Theory. Springer-Verlag, London, 2013.
  5. Polyharmonic functions and random processes in cones. International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, 2020.
  6. Ordered exponential random walks. ALEA, Lat. Am. J. Probab. Math. Stat. 20:1211–1246, 2023.
  7. Doney, R.A. Local behaviour of first passage probabilities. Probab. Theory Relat. Fields, 152:559–588, 2012.
  8. Logarithmic terms in discrete heat kernel expansions in the quadrant. ArXiv: 2309.15209.
  9. Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed. Wiley, New York, 1971.
  10. Analytic Combinatorics. Cambridge University Press, 2009.
  11. Conditioned local limit theorems for random walks on the real line ArXiv preprint: 2110.05123.
  12. Gelfond, A. O. An estimate for the remainder term in the limit theorem for recurrent events.(Russian. English summary) Teor. Verojatnost. i Primenen., 9:327–331, 1964.
  13. Koroljuk, V. S. Asymptotic analysis of distributions of maximum deviation on a lattice random walk. Teor. Verojatnost. i Primenen. 7: 393–409, 1962.
  14. Nagaev, S. V. Asymptotic expansions for the distribution function of the maximum of the sums of independent identically distributed random variables. Siberian Math. J. 11:288–309, 1970.
  15. Nessmann, A. Polyharmonic functions in the quarter plane. ArXiv: 2212.07258.
  16. Nessmann, A. Full asymptotic expansions for orbit-summable quadrant walks and discrete polyharmonic functions. ArXiv: 2307.11539.
  17. Petrov, V. V. Sums of independent random variables. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. Springer-Verlag, New York-Heidelberg, 1975.
  18. Rogozin B.A. On the distribution of the first ladder moment and height and fluctuations of a random walk. Theory Probab. Appl., 16:575-595, 1971.
  19. Local probabilities for random walks conditioned to stay positive. Probab. Theory Relat. Fields, 143:177–217, 2009.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com