Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic expansions for normal deviations of random walks conditioned to stay positive (2412.09145v1)

Published 12 Dec 2024 in math.PR

Abstract: We consider a one-dimensional random walk $S_n$ having i.i.d. increments with zero mean and finite variance. We continue our study of asymptotic expansions for local probabilities $\mathbf P(S_n=x,\tau_0>n)$, which has been started in \cite{DTW23}. Obtained there expansions make sense in the zone $x=o(\frac{\sqrt{n}}{\log{1/2} n})$ only. In the present paper we derive an alternative expansion, which deals with $x$ of order $\sqrt{n}$.

Summary

We haven't generated a summary for this paper yet.