Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Benchmarking hybrid digitized-counterdiabatic quantum optimization (2401.09849v1)

Published 18 Jan 2024 in quant-ph

Abstract: Hybrid digitized-counterdiabatic quantum computing (DCQC) is a promising approach for leveraging the capabilities of near-term quantum computers, utilizing parameterized quantum circuits designed with counterdiabatic protocols. However, the classical aspect of this approach has received limited attention. In this study, we systematically analyze the convergence behavior and solution quality of various classical optimizers when used in conjunction with the digitized-counterdiabatic approach. We demonstrate the effectiveness of this hybrid algorithm by comparing its performance to the traditional QAOA on systems containing up to 28 qubits. Furthermore, we employ principal component analysis to investigate the cost landscape and explore the crucial influence of parameterization on the performance of the counterdiabatic ansatz. Our findings indicate that fewer iterations are required when local cost landscape minima are present, and the SPSA-based BFGS optimizer emerges as a standout choice for the hybrid DCQC paradigm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J. Yao, L. Lin, and M. Bukov, Reinforcement learning for many-body ground-state preparation inspired by counterdiabatic driving, Phys. Rev. X 11, 031070 (2021).
  2. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv preprint arXiv:1411.4028  (2014).
  3. E. Bae and S. Lee, Recursive quantum approximate optimization algorithm for the max-cut problem on complete graphs, arXiv preprint arXiv:2211.15832  (2022).
  4. J. Wurtz and P. J. Love, Classically optimal variational quantum algorithms, IEEE Transactions on Quantum Engineering 2, 1 (2021).
  5. O. Lockwood, An empirical review of optimization techniques for quantum variational circuits, arXiv preprint arXiv:2202.01389  (2022).
  6. X. Chen, E. Torrontegui, and J. G. Muga, Lewis-riesenfeld invariants and transitionless quantum driving, Phys. Rev. A 83, 062116 (2011).
  7. A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111, 100502 (2013).
  8. T. Hoffmann and D. Brown, Gradient estimation with constant scaling for hybrid quantum machine learning, arXiv preprint arXiv:2211.13981  (2022).
  9. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980  (2014).
  10. J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research 12, 2121 (2011).
  11. M. J. D. Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation, Advances in Optimization and Numerical Analysis , 51 (1994).
  12. J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal 7, 308 (1965).
  13. J. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, IEEE Transactions on Automatic Control 37, 332 (1992).
  14. J. Spall, Implementation of the simultaneous perturbation algorithm for stochastic optimization, IEEE Transactions on Aerospace and Electronic Systems 34, 817 (1998).
  15. D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Physical Review Letters 35, 1792 (1975).
  16. A. Lucas, Ising formulations of many np problems, Frontiers in Physics 2 (2014).
  17. J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering (Springer New York, 2006).
  18. M. Developer, Mindquantum, version 0.6.0 (2021).
  19. M. J. D. Powell, Direct search algorithms for optimization calculations, Acta Numerica 7, 287–336 (1998).
  20. M. A. Luersen and R. Le Riche, Globalized nelder–mead method for engineering optimization, Computers & Structures 82, 2251 (2004), computational Structures Technology.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.