2000 character limit reached
Canonical quantization of lattice Chern-Simons theory (2401.09597v1)
Published 17 Jan 2024 in hep-th and hep-lat
Abstract: We discuss the canonical quantization of $U(1)_k$ Chern-Simons theory on a spatial lattice. In addition to the usual local Gauss law constraints, the physical Hilbert space is defined by 1-form gauge constraints implementing the compactness of the $U(1)$ gauge group, and (depending on the details of the spatial lattice) non-local constraints which project out unframed Wilson loops. Though the ingredients of the lattice model are bosonic, the physical Hilbert space is finite-dimensional, with exactly $k$ ground states on a spatial torus. We quantize both the bosonic (even level) and fermionic (odd level) theories, describing in detail how the latter depends on a choice of spin structure.
- J. Frohlich and P. A. Marchetti, “Quantum Field Theories of Vortices and Anyons,” Commun. Math. Phys. 121 (1989) 177–223.
- A. R. Kavalov and R. L. Mkrtchian, “The Lattice construction for Abelian Chern-Simons gauge theory,” Phys. Lett. B 242 (1990) 429–431.
- D. Eliezer and G. W. Semenoff, “Anyonization of lattice Chern-Simons theory,” Annals Phys. 217 (1992) 66–104.
- D. Eliezer and G. W. Semenoff, “Intersection forms and the geometry of lattice Chern-Simons theory,” Phys. Lett. B 286 (1992) 118–124, arXiv:hep-th/9204048.
- M. Luscher, “Bosonization in (2+1)-Dimensions,” Nucl. Phys. B 326 (1989) 557–582.
- V. F. Muller, “Intermediate Statistics in Two Space Dimensions in a Lattice Regularized Hamiltonian Quantum Field Theory,” Z. Phys. C 47 (1990) 301–310.
- K. Sun, K. Kumar, and E. Fradkin, “Discretized Abelian Chern-Simons gauge theory on arbitrary graphs,” Phys. Rev. B 92 no. 11, (2015) 115148, arXiv:1502.00641 [cond-mat.str-el].
- M. DeMarco and X.-G. Wen, “Compact Uk(1)superscript𝑈𝑘1U^{k}(1)italic_U start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( 1 ) Chern-Simons Theory as a Local Bosonic Lattice Model with Exact Discrete 1-Symmetries,” Phys. Rev. Lett. 126 no. 2, (2021) 021603, arXiv:1906.08270 [cond-mat.str-el].
- T. Jacobson and T. Sulejmanpasic, “Modified Villain formulation of Abelian Chern-Simons theory,” Phys. Rev. D 107 no. 12, (2023) 125017, arXiv:2303.06160 [hep-th].
- J. Villain, “Theory of one- and two-dimensional magnets with an easy magnetization plane. ii. the planar, classical, two-dimensional magnet,” J. Phys. France 36 no. 6, (1975) 581–590.
- T. Sulejmanpasic and C. Gattringer, “Abelian gauge theories on the lattice: θ𝜃\thetaitalic_θ-terms and compact gauge theory with(out) monopoles,” Nucl. Phys. B943 (2019) 114616, arXiv:1901.02637 [hep-lat].
- P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “A modified Villain formulation of fractons and other exotic theories,” J. Math. Phys. 62 no. 10, (2021) 102301, arXiv:2103.01257 [cond-mat.str-el].
- Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
- M. Anosova, C. Gattringer, and T. Sulejmanpasic, “Self-dual U(1) lattice field theory with a θ𝜃\thetaitalic_θ-term,” JHEP 04 (2022) 120, arXiv:2201.09468 [hep-lat].
- M. Anosova, C. Gattringer, N. Iqbal, and T. Sulejmanpasic, “Phase structure of self-dual lattice gauge theories in 4d,” JHEP 06 (2022) 149, arXiv:2203.14774 [hep-th].
- M. Yoneda, “Equivalence of the modified Villain formulation and the dual Hamiltonian method in the duality of the XY-plaquette model,” arXiv:2211.01632 [hep-th].
- L. Fazza and T. Sulejmanpasic, “Lattice Quantum Villain Hamiltonians: Compact scalars, U(1)𝑈1U(1)italic_U ( 1 ) gauge theories, fracton models and Quantum Ising model dualities,” arXiv:2211.13047 [hep-th].
- M. Cheng and N. Seiberg, “Lieb-Schultz-Mattis, Luttinger, and ’t Hooft – anomaly matching in lattice systems,” arXiv:2211.12543 [cond-mat.str-el].
- R. Thorngren, T. Rakovszky, R. Verresen, and A. Vishwanath, “Higgs Condensates are Symmetry-Protected Topological Phases: II. U(1)𝑈1U(1)italic_U ( 1 ) Gauge Theory and Superconductors,” arXiv:2303.08136 [cond-mat.str-el].
- S. Seifnashri, “Lieb-Schultz-Mattis anomalies as obstructions to gauging (non-on-site) symmetries,” arXiv:2308.05151 [cond-mat.str-el].
- E. Berkowitz, A. Cherman, and T. Jacobson, “Exact lattice chiral symmetry in 2d gauge theory,” arXiv:2310.17539 [hep-lat].
- J.-Y. Chen, “Abelian Topological Order on Lattice Enriched with Electromagnetic Background,” Commun. Math. Phys. 381 no. 1, (2021) 293–377, arXiv:1902.06756 [cond-mat.str-el].
- Z. Han and J.-Y. Chen, “Solvable lattice Hamiltonians with fractional Hall conductivity,” Phys. Rev. B 105 no. 15, (2022) 155130, arXiv:2107.02817 [cond-mat.str-el].
- Z. Han and J.-Y. Chen, “Fractional Hall conductivity and spin-c structure in solvable lattice Hamiltonians,” JHEP 02 (2023) 130, arXiv:2208.13785 [cond-mat.str-el].
- D. Gaiotto and A. Kapustin, “Spin TQFTs and fermionic phases of matter,” Int. J. Mod. Phys. A 31 no. 28n29, (2016) 1645044, arXiv:1505.05856 [cond-mat.str-el].
- L. Bhardwaj, D. Gaiotto, and A. Kapustin, “State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter,” JHEP 04 (2017) 096, arXiv:1605.01640 [cond-mat.str-el].
- F. Wilczek, “Magnetic flux, angular momentum, and statistics,” Phys. Rev. Lett. 48 (Apr, 1982) 1144–1146. https://link.aps.org/doi/10.1103/PhysRevLett.48.1144.
- A. M. Polyakov, “Fermi-Bose Transmutations Induced by Gauge Fields,” Mod. Phys. Lett. A 3 (1988) 325.
- M. E. Peskin, “Mandelstam ’t Hooft Duality in Abelian Lattice Models,” Annals Phys. 113 (1978) 122.
- C. Dasgupta and B. I. Halperin, “Phase Transition in a Lattice Model of Superconductivity,” Phys. Rev. Lett. 47 (1981) 1556–1560.
- J.-Y. Chen, J. H. Son, C. Wang, and S. Raghu, “Exact Boson-Fermion Duality on a 3D Euclidean Lattice,” Phys. Rev. Lett. 120 no. 1, (2018) 016602, arXiv:1705.05841 [cond-mat.str-el].
- J.-Y. Chen and M. Zimet, “Strong-Weak Chern-Simons-Matter Dualities from a Lattice Construction,” JHEP 08 (2018) 015, arXiv:1806.04141 [hep-th].
- E. Witten, “Quantum Field Theory and the Jones Polynomial,” Commun.Math.Phys. 121 (1989) 351–399.
- J. B. Kogut and L. Susskind, “Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,” Phys. Rev. D11 (1975) 395–408.
- Y.-A. Chen and S. Tata, “Higher cup products on hypercubic lattices: application to lattice models of topological phases,” arXiv:2106.05274 [cond-mat.str-el].
- R. D. Pisarski, “Monopoles in topologically massive gauge theories,” Phys. Rev. D 34 (Dec, 1986) 3851–3857. https://link.aps.org/doi/10.1103/PhysRevD.34.3851.
- I. Affleck, J. Harvey, L. Palla, and G. Semenoff, “The chern-simons term versus the monopole,” Nuclear Physics B 328 no. 3, (1989) 575–584. https://www.sciencedirect.com/science/article/pii/0550321389902204.
- R. Dijkgraaf and E. Witten, “Topological gauge theories and group cohomology,” Communications in Mathematical Physics 129 no. 2, (1990) 393 – 429.
- D. Belov and G. W. Moore, “Classification of Abelian spin Chern-Simons theories,” arXiv:hep-th/0505235.
- Y. Wan and C. Wang, “Fermion Condensation and Gapped Domain Walls in Topological Orders,” JHEP 03 (2017) 172, arXiv:1607.01388 [cond-mat.str-el].
- A. Kapustin and R. Thorngren, “Fermionic SPT phases in higher dimensions and bosonization,” JHEP 10 (2017) 080, arXiv:1701.08264 [cond-mat.str-el].
- D. Aasen, E. Lake, and K. Walker, “Fermion condensation and super pivotal categories,” J. Math. Phys. 60 no. 12, (2019) 121901, arXiv:1709.01941 [cond-mat.str-el].
- Y.-A. Chen, A. Kapustin, and D. Radičević, “Exact bosonization in two spatial dimensions and a new class of lattice gauge theories,” Annals Phys. 393 (2018) 234–253, arXiv:1711.00515 [cond-mat.str-el].
- Y.-A. Chen and A. Kapustin, “Bosonization in three spatial dimensions and a 2-form gauge theory,” Phys. Rev. B 100 no. 24, (2019) 245127, arXiv:1807.07081 [cond-mat.str-el].
- Y.-A. Chen, “Exact bosonization in arbitrary dimensions,” Phys. Rev. Res. 2 no. 3, (2020) 033527, arXiv:1911.00017 [cond-mat.str-el].
- D. Johnson, “Spin Structures and Quadratic forms on Surfaces,” Journal of the London Mathematical Society s2-22 no. 2, (10, 1980) 365–373. https://doi.org/10.1112/jlms/s2-22.2.365.
- A. Karch, D. Tong, and C. Turner, “A Web of 2d Dualities: 𝐙2subscript𝐙2{\bf Z}_{2}bold_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Gauge Fields and Arf Invariants,” SciPost Phys. 7 (2019) 007, arXiv:1902.05550 [hep-th].
- N. Seiberg and E. Witten, “Gapped Boundary Phases of Topological Insulators via Weak Coupling,” Prog. Theor. Exp. Phys. 2016 no. 12, (2016) 12C101, arXiv:1602.04251 [cond-mat.str-el].
- N. Seiberg, T. Senthil, C. Wang, and E. Witten, “A Duality Web in 2+1 Dimensions and Condensed Matter Physics,” Annals Phys. 374 (2016) 395–433, arXiv:1606.01989 [hep-th].
- F. Wilczek, “Magnetic flux, angular momentum, and statistics,” Phys. Rev. Lett. 48 (1982) 1144–1146.
- N. Shaji, R. Shankar, and M. Sivakumar, “On Bose-fermi Equivalence in a U(1) Gauge Theory With Chern-Simons Action,” Mod. Phys. Lett. A 5 (1990) 593.
- A. Y. Kitaev, “Fault tolerant quantum computation by anyons,” Annals Phys. 303 (2003) 2–30, arXiv:quant-ph/9707021.
- M. A. Levin and X.-G. Wen, “String net condensation: A Physical mechanism for topological phases,” Phys. Rev. B 71 (2005) 045110, arXiv:cond-mat/0404617.
- A. Kitaev and J. Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96 (2006) 110404, arXiv:hep-th/0510092 [hep-th].
- M. Levin and X.-G. Wen, “Detecting topological order in a ground state wave function,” Phys. Rev. Lett. 96 (Mar, 2006) 110405.
- S. Dong, E. Fradkin, R. G. Leigh, and S. Nowling, “Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids,” JHEP 05 (2008) 016, arXiv:0802.3231 [hep-th].
- S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg, “Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory,” Nucl. Phys. B 326 (1989) 108–134.
- X. G. Wen, “Chiral Luttinger Liquid and the Edge Excitations in the Fractional Quantum Hall States,” Phys. Rev. B 41 (1990) 12838–12844.
- S. Hellerman, D. Orlando, and M. Watanabe, “Quantum Information Theory of the Gravitational Anomaly,” arXiv:2101.03320 [hep-th].
- M. DeMarco, E. Lake, and X.-G. Wen, “A Lattice Chiral Boson Theory in 1+1111+11 + 1d,” arXiv:2305.03024 [cond-mat.str-el].
- D. Berenstein, “Staggered bosons,” arXiv:2303.12837 [hep-th].
- D. Berenstein and P. N. T. Lloyd, “One dimensional Staggered Bosons, Clock models and their non-invertible symmetries,” arXiv:2311.00057 [hep-th].
- D. B. Kaplan, “Chiral gauge theory at the boundary between topological phases,” arXiv:2312.01494 [hep-lat].
- D. B. Kaplan and S. Sen, “Weyl fermions on a finite lattice,” arXiv:2312.04012 [hep-lat].