Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonical quantization of lattice Chern-Simons theory (2401.09597v1)

Published 17 Jan 2024 in hep-th and hep-lat

Abstract: We discuss the canonical quantization of $U(1)_k$ Chern-Simons theory on a spatial lattice. In addition to the usual local Gauss law constraints, the physical Hilbert space is defined by 1-form gauge constraints implementing the compactness of the $U(1)$ gauge group, and (depending on the details of the spatial lattice) non-local constraints which project out unframed Wilson loops. Though the ingredients of the lattice model are bosonic, the physical Hilbert space is finite-dimensional, with exactly $k$ ground states on a spatial torus. We quantize both the bosonic (even level) and fermionic (odd level) theories, describing in detail how the latter depends on a choice of spin structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. J. Frohlich and P. A. Marchetti, “Quantum Field Theories of Vortices and Anyons,” Commun. Math. Phys. 121 (1989) 177–223.
  2. A. R. Kavalov and R. L. Mkrtchian, “The Lattice construction for Abelian Chern-Simons gauge theory,” Phys. Lett. B 242 (1990) 429–431.
  3. D. Eliezer and G. W. Semenoff, “Anyonization of lattice Chern-Simons theory,” Annals Phys. 217 (1992) 66–104.
  4. D. Eliezer and G. W. Semenoff, “Intersection forms and the geometry of lattice Chern-Simons theory,” Phys. Lett. B 286 (1992) 118–124, arXiv:hep-th/9204048.
  5. M. Luscher, “Bosonization in (2+1)-Dimensions,” Nucl. Phys. B 326 (1989) 557–582.
  6. V. F. Muller, “Intermediate Statistics in Two Space Dimensions in a Lattice Regularized Hamiltonian Quantum Field Theory,” Z. Phys. C 47 (1990) 301–310.
  7. K. Sun, K. Kumar, and E. Fradkin, “Discretized Abelian Chern-Simons gauge theory on arbitrary graphs,” Phys. Rev. B 92 no. 11, (2015) 115148, arXiv:1502.00641 [cond-mat.str-el].
  8. M. DeMarco and X.-G. Wen, “Compact Uk⁢(1)superscript𝑈𝑘1U^{k}(1)italic_U start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( 1 ) Chern-Simons Theory as a Local Bosonic Lattice Model with Exact Discrete 1-Symmetries,” Phys. Rev. Lett. 126 no. 2, (2021) 021603, arXiv:1906.08270 [cond-mat.str-el].
  9. T. Jacobson and T. Sulejmanpasic, “Modified Villain formulation of Abelian Chern-Simons theory,” Phys. Rev. D 107 no. 12, (2023) 125017, arXiv:2303.06160 [hep-th].
  10. J. Villain, “Theory of one- and two-dimensional magnets with an easy magnetization plane. ii. the planar, classical, two-dimensional magnet,” J. Phys. France 36 no. 6, (1975) 581–590.
  11. T. Sulejmanpasic and C. Gattringer, “Abelian gauge theories on the lattice: θ𝜃\thetaitalic_θ-terms and compact gauge theory with(out) monopoles,” Nucl. Phys. B943 (2019) 114616, arXiv:1901.02637 [hep-lat].
  12. P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “A modified Villain formulation of fractons and other exotic theories,” J. Math. Phys. 62 no. 10, (2021) 102301, arXiv:2103.01257 [cond-mat.str-el].
  13. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
  14. M. Anosova, C. Gattringer, and T. Sulejmanpasic, “Self-dual U(1) lattice field theory with a θ𝜃\thetaitalic_θ-term,” JHEP 04 (2022) 120, arXiv:2201.09468 [hep-lat].
  15. M. Anosova, C. Gattringer, N. Iqbal, and T. Sulejmanpasic, “Phase structure of self-dual lattice gauge theories in 4d,” JHEP 06 (2022) 149, arXiv:2203.14774 [hep-th].
  16. M. Yoneda, “Equivalence of the modified Villain formulation and the dual Hamiltonian method in the duality of the XY-plaquette model,” arXiv:2211.01632 [hep-th].
  17. L. Fazza and T. Sulejmanpasic, “Lattice Quantum Villain Hamiltonians: Compact scalars, U⁢(1)𝑈1U(1)italic_U ( 1 ) gauge theories, fracton models and Quantum Ising model dualities,” arXiv:2211.13047 [hep-th].
  18. M. Cheng and N. Seiberg, “Lieb-Schultz-Mattis, Luttinger, and ’t Hooft – anomaly matching in lattice systems,” arXiv:2211.12543 [cond-mat.str-el].
  19. R. Thorngren, T. Rakovszky, R. Verresen, and A. Vishwanath, “Higgs Condensates are Symmetry-Protected Topological Phases: II. U⁢(1)𝑈1U(1)italic_U ( 1 ) Gauge Theory and Superconductors,” arXiv:2303.08136 [cond-mat.str-el].
  20. S. Seifnashri, “Lieb-Schultz-Mattis anomalies as obstructions to gauging (non-on-site) symmetries,” arXiv:2308.05151 [cond-mat.str-el].
  21. E. Berkowitz, A. Cherman, and T. Jacobson, “Exact lattice chiral symmetry in 2d gauge theory,” arXiv:2310.17539 [hep-lat].
  22. J.-Y. Chen, “Abelian Topological Order on Lattice Enriched with Electromagnetic Background,” Commun. Math. Phys. 381 no. 1, (2021) 293–377, arXiv:1902.06756 [cond-mat.str-el].
  23. Z. Han and J.-Y. Chen, “Solvable lattice Hamiltonians with fractional Hall conductivity,” Phys. Rev. B 105 no. 15, (2022) 155130, arXiv:2107.02817 [cond-mat.str-el].
  24. Z. Han and J.-Y. Chen, “Fractional Hall conductivity and spin-c structure in solvable lattice Hamiltonians,” JHEP 02 (2023) 130, arXiv:2208.13785 [cond-mat.str-el].
  25. D. Gaiotto and A. Kapustin, “Spin TQFTs and fermionic phases of matter,” Int. J. Mod. Phys. A 31 no. 28n29, (2016) 1645044, arXiv:1505.05856 [cond-mat.str-el].
  26. L. Bhardwaj, D. Gaiotto, and A. Kapustin, “State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter,” JHEP 04 (2017) 096, arXiv:1605.01640 [cond-mat.str-el].
  27. F. Wilczek, “Magnetic flux, angular momentum, and statistics,” Phys. Rev. Lett. 48 (Apr, 1982) 1144–1146. https://link.aps.org/doi/10.1103/PhysRevLett.48.1144.
  28. A. M. Polyakov, “Fermi-Bose Transmutations Induced by Gauge Fields,” Mod. Phys. Lett. A 3 (1988) 325.
  29. M. E. Peskin, “Mandelstam ’t Hooft Duality in Abelian Lattice Models,” Annals Phys. 113 (1978) 122.
  30. C. Dasgupta and B. I. Halperin, “Phase Transition in a Lattice Model of Superconductivity,” Phys. Rev. Lett. 47 (1981) 1556–1560.
  31. J.-Y. Chen, J. H. Son, C. Wang, and S. Raghu, “Exact Boson-Fermion Duality on a 3D Euclidean Lattice,” Phys. Rev. Lett. 120 no. 1, (2018) 016602, arXiv:1705.05841 [cond-mat.str-el].
  32. J.-Y. Chen and M. Zimet, “Strong-Weak Chern-Simons-Matter Dualities from a Lattice Construction,” JHEP 08 (2018) 015, arXiv:1806.04141 [hep-th].
  33. E. Witten, “Quantum Field Theory and the Jones Polynomial,” Commun.Math.Phys. 121 (1989) 351–399.
  34. J. B. Kogut and L. Susskind, “Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,” Phys. Rev. D11 (1975) 395–408.
  35. Y.-A. Chen and S. Tata, “Higher cup products on hypercubic lattices: application to lattice models of topological phases,” arXiv:2106.05274 [cond-mat.str-el].
  36. R. D. Pisarski, “Monopoles in topologically massive gauge theories,” Phys. Rev. D 34 (Dec, 1986) 3851–3857. https://link.aps.org/doi/10.1103/PhysRevD.34.3851.
  37. I. Affleck, J. Harvey, L. Palla, and G. Semenoff, “The chern-simons term versus the monopole,” Nuclear Physics B 328 no. 3, (1989) 575–584. https://www.sciencedirect.com/science/article/pii/0550321389902204.
  38. R. Dijkgraaf and E. Witten, “Topological gauge theories and group cohomology,” Communications in Mathematical Physics 129 no. 2, (1990) 393 – 429.
  39. D. Belov and G. W. Moore, “Classification of Abelian spin Chern-Simons theories,” arXiv:hep-th/0505235.
  40. Y. Wan and C. Wang, “Fermion Condensation and Gapped Domain Walls in Topological Orders,” JHEP 03 (2017) 172, arXiv:1607.01388 [cond-mat.str-el].
  41. A. Kapustin and R. Thorngren, “Fermionic SPT phases in higher dimensions and bosonization,” JHEP 10 (2017) 080, arXiv:1701.08264 [cond-mat.str-el].
  42. D. Aasen, E. Lake, and K. Walker, “Fermion condensation and super pivotal categories,” J. Math. Phys. 60 no. 12, (2019) 121901, arXiv:1709.01941 [cond-mat.str-el].
  43. Y.-A. Chen, A. Kapustin, and D. Radičević, “Exact bosonization in two spatial dimensions and a new class of lattice gauge theories,” Annals Phys. 393 (2018) 234–253, arXiv:1711.00515 [cond-mat.str-el].
  44. Y.-A. Chen and A. Kapustin, “Bosonization in three spatial dimensions and a 2-form gauge theory,” Phys. Rev. B 100 no. 24, (2019) 245127, arXiv:1807.07081 [cond-mat.str-el].
  45. Y.-A. Chen, “Exact bosonization in arbitrary dimensions,” Phys. Rev. Res. 2 no. 3, (2020) 033527, arXiv:1911.00017 [cond-mat.str-el].
  46. D. Johnson, “Spin Structures and Quadratic forms on Surfaces,” Journal of the London Mathematical Society s2-22 no. 2, (10, 1980) 365–373. https://doi.org/10.1112/jlms/s2-22.2.365.
  47. A. Karch, D. Tong, and C. Turner, “A Web of 2d Dualities: 𝐙2subscript𝐙2{\bf Z}_{2}bold_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Gauge Fields and Arf Invariants,” SciPost Phys. 7 (2019) 007, arXiv:1902.05550 [hep-th].
  48. N. Seiberg and E. Witten, “Gapped Boundary Phases of Topological Insulators via Weak Coupling,” Prog. Theor. Exp. Phys. 2016 no. 12, (2016) 12C101, arXiv:1602.04251 [cond-mat.str-el].
  49. N. Seiberg, T. Senthil, C. Wang, and E. Witten, “A Duality Web in 2+1 Dimensions and Condensed Matter Physics,” Annals Phys. 374 (2016) 395–433, arXiv:1606.01989 [hep-th].
  50. F. Wilczek, “Magnetic flux, angular momentum, and statistics,” Phys. Rev. Lett. 48 (1982) 1144–1146.
  51. N. Shaji, R. Shankar, and M. Sivakumar, “On Bose-fermi Equivalence in a U(1) Gauge Theory With Chern-Simons Action,” Mod. Phys. Lett. A 5 (1990) 593.
  52. A. Y. Kitaev, “Fault tolerant quantum computation by anyons,” Annals Phys. 303 (2003) 2–30, arXiv:quant-ph/9707021.
  53. M. A. Levin and X.-G. Wen, “String net condensation: A Physical mechanism for topological phases,” Phys. Rev. B 71 (2005) 045110, arXiv:cond-mat/0404617.
  54. A. Kitaev and J. Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96 (2006) 110404, arXiv:hep-th/0510092 [hep-th].
  55. M. Levin and X.-G. Wen, “Detecting topological order in a ground state wave function,” Phys. Rev. Lett. 96 (Mar, 2006) 110405.
  56. S. Dong, E. Fradkin, R. G. Leigh, and S. Nowling, “Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids,” JHEP 05 (2008) 016, arXiv:0802.3231 [hep-th].
  57. S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg, “Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory,” Nucl. Phys. B 326 (1989) 108–134.
  58. X. G. Wen, “Chiral Luttinger Liquid and the Edge Excitations in the Fractional Quantum Hall States,” Phys. Rev. B 41 (1990) 12838–12844.
  59. S. Hellerman, D. Orlando, and M. Watanabe, “Quantum Information Theory of the Gravitational Anomaly,” arXiv:2101.03320 [hep-th].
  60. M. DeMarco, E. Lake, and X.-G. Wen, “A Lattice Chiral Boson Theory in 1+1111+11 + 1d,” arXiv:2305.03024 [cond-mat.str-el].
  61. D. Berenstein, “Staggered bosons,” arXiv:2303.12837 [hep-th].
  62. D. Berenstein and P. N. T. Lloyd, “One dimensional Staggered Bosons, Clock models and their non-invertible symmetries,” arXiv:2311.00057 [hep-th].
  63. D. B. Kaplan, “Chiral gauge theory at the boundary between topological phases,” arXiv:2312.01494 [hep-lat].
  64. D. B. Kaplan and S. Sen, “Weyl fermions on a finite lattice,” arXiv:2312.04012 [hep-lat].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com