Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modified Villain formulation of abelian Chern-Simons theory (2303.06160v2)

Published 10 Mar 2023 in hep-th, cond-mat.str-el, and hep-lat

Abstract: We formulate $U(1)_k$ Chern-Simons theory on a Euclidean spacetime lattice using the modified Villain approach. Various familiar aspects of continuum Chern-Simons theory such as level quantization, framing, the discrete 1-form symmetry and its 't Hooft anomaly, as well as the electric charge of monopole operators are manifest in our construction. The key technical ingredient is the cup product and its higher generalizations on the (hyper-)cubic lattice, which recently appeared in the literature. All unframed Wilson loops are projected out by a peculiar subsystem symmetry, leaving topological, ribbon-like Wilson loops which have the correct correlation functions and topological spins expected from the continuum theory. Our action can be obtained from a new definition of the theta term in four dimensions which improves upon previous constructions within the modified Villain approach. This bulk action coupled to background fields for the 1-form symmetry is given by the Pontryagin square, which provides anomaly inflow directly on the lattice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. A. Kapustin and R. Thorngren, “Anomalies of discrete symmetries in various dimensions and group cohomology,” arXiv:1404.3230 [hep-th].
  2. J.-Y. Chen, “Abelian Topological Order on Lattice Enriched with Electromagnetic Background,” Commun. Math. Phys. 381 no. 1, (2021) 293–377, arXiv:1902.06756 [cond-mat.str-el].
  3. D. Radicevic, “Confinement and Flux Attachment,” arXiv:2110.10169 [hep-th].
  4. A. M. Polyakov, “Fermi-Bose Transmutations Induced by Gauge Fields,” Mod. Phys. Lett. A 3 (1988) 325.
  5. E. Witten, “Quantum Field Theory and the Jones Polynomial,” Commun.Math.Phys. 121 (1989) 351–399.
  6. A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals Phys. 321 no. 1, (2006) 2–111, arXiv:cond-mat/0506438 [cond-mat.mes-hall].
  7. J. Fröhlich and P. A. Marchetti, “Quantum Field Theories of Vortices and Anyons,” Commun. Math. Phys. 121 (1989) 177–223.
  8. A. R. Kavalov and R. L. Mkrtchian, “The Lattice construction for Abelian Chern-Simons gauge theory,” Phys. Lett. B 242 (1990) 429–431.
  9. M. C. Diamantini, P. Sodano, and C. A. Trugenberger, “Topological excitations in compact Maxwell-Chern-Simons theory,” Phys. Rev. Lett. 71 (1993) 1969–1972, arXiv:hep-th/9306073.
  10. M. DeMarco and X.-G. Wen, “Compact Uk⁢(1)superscript𝑈𝑘1U^{k}(1)italic_U start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( 1 ) Chern-Simons Theory as a Local Bosonic Lattice Model with Exact Discrete 1-Symmetries,” Phys. Rev. Lett. 126 no. 2, (2021) 021603, arXiv:1906.08270 [cond-mat.str-el].
  11. B. Zhang, “Abelian Chern-Simons gauge theory on the lattice,” Phys. Rev. D 105 no. 1, (2022) 014507, arXiv:2109.13411 [hep-th].
  12. M. Lüscher, “Bosonization in (2+1)-Dimensions,” Nucl. Phys. B 326 (1989) 557–582.
  13. V. F. Müller, “Intermediate Statistics in Two Space Dimensions in a Lattice Regularized Hamiltonian Quantum Field Theory,” Z. Phys. C 47 (1990) 301–310.
  14. D. Eliezer and G. W. Semenoff, “Anyonization of lattice Chern-Simons theory,” Annals Phys. 217 (1992) 66–104.
  15. D. Eliezer and G. W. Semenoff, “Intersection forms and the geometry of lattice Chern-Simons theory,” Phys. Lett. B 286 (1992) 118–124, arXiv:hep-th/9204048.
  16. K. Sun, K. Kumar, and E. Fradkin, “Discretized Abelian Chern-Simons gauge theory on arbitrary graphs,” Phys. Rev. B 92 no. 11, (2015) 115148, arXiv:1502.00641 [cond-mat.str-el].
  17. J. Villain, “Theory of one- and two-dimensional magnets with an easy magnetization plane. ii. the planar, classical, two-dimensional magnet,” J. Phys. France 36 no. 6, (1975) 581–590.
  18. D. J. Gross and I. R. Klebanov, “One-dimensional string theory on a circle,” Nucl. Phys. B 344 (1990) 475–498.
  19. T. Sulejmanpasic and C. Gattringer, “Abelian gauge theories on the lattice: θ𝜃\thetaitalic_θ-terms and compact gauge theory with(out) monopoles,” Nucl. Phys. B943 (2019) 114616, arXiv:1901.02637 [hep-lat].
  20. P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “A modified Villain formulation of fractons and other exotic theories,” J. Math. Phys. 62 no. 10, (2021) 102301, arXiv:2103.01257 [cond-mat.str-el].
  21. D. Göschl, C. Gattringer, and T. Sulejmanpasic, “The critical endpoint in the 2-d U(1) gauge-Higgs model at topological angle θ=π𝜃𝜋\theta=\piitalic_θ = italic_π,” PoS LATTICE2018 (2018) 226, arXiv:1810.09671 [hep-lat].
  22. M. Anosova, C. Gattringer, D. Göschl, T. Sulejmanpasic, and P. Törek, “Topological terms in abelian lattice field theories,” PoS LATTICE2019 (2019) 082, arXiv:1912.11685 [hep-lat].
  23. T. Sulejmanpasic, D. Göschl, and C. Gattringer, “First-Principles Simulations of 1+1D Quantum Field Theories at θ=π𝜃𝜋\theta=\piitalic_θ = italic_π and Spin Chains,” Phys. Rev. Lett. 125 no. 20, (2020) 201602, arXiv:2007.06323 [cond-mat.str-el].
  24. C. Gattringer and P. Törek, “Topology and index theorem with a generalized Villain lattice action – a test in 2d,” Phys. Lett. B 795 (2019) 581–586, arXiv:1905.03963 [hep-lat].
  25. T. Sulejmanpasic, “Ising model as a U⁢(1)𝑈1U(1)italic_U ( 1 ) lattice gauge theory with a θ𝜃\thetaitalic_θ-term,” Phys. Rev. D 103 no. 3, (2021) 034512, arXiv:2009.13383 [hep-lat].
  26. M. Anosova, C. Gattringer”, N. Iqbal, and T. Sulejmanpasic, “Numerical simulation of self-dual U(1) lattice field theory with electric and magnetic matter,” PoS LATTICE2021 (2022) 386, arXiv:2111.02033 [hep-lat].
  27. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
  28. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” arXiv:2204.09025 [hep-th].
  29. M. Anosova, C. Gattringer, and T. Sulejmanpasic, “Self-dual U(1) lattice field theory with a θ𝜃\thetaitalic_θ-term,” JHEP 04 (2022) 120, arXiv:2201.09468 [hep-lat].
  30. M. Anosova, C. Gattringer, N. Iqbal, and T. Sulejmanpasic, “Phase structure of self-dual lattice gauge theories in 4d,” JHEP 06 (2022) 149, arXiv:2203.14774 [hep-th].
  31. D. Hirtler and C. Gattringer, “Massless Schwinger model with a 4-fermi interaction at topological angle θ=π𝜃𝜋\theta=\piitalic_θ = italic_π,” PoS LATTICE2022 (2023) 372, arXiv:2210.13787 [hep-lat].
  32. L. Fazza and T. Sulejmanpasic, “Lattice Quantum Villain Hamiltonians: Compact scalars, U⁢(1)𝑈1U(1)italic_U ( 1 ) gauge theories, fracton models and Quantum Ising model dualities,” arXiv:2211.13047 [hep-th].
  33. R. D. Pisarski, “Monopoles in topologically massive gauge theories,” Phys. Rev. D 34 (Dec, 1986) 3851–3857. https://link.aps.org/doi/10.1103/PhysRevD.34.3851.
  34. I. Affleck, J. Harvey, L. Palla, and G. Semenoff, “The chern-simons term versus the monopole,” Nuclear Physics B 328 no. 3, (1989) 575–584. https://www.sciencedirect.com/science/article/pii/0550321389902204.
  35. M. Yoneda, “Equivalence of the modified Villain formulation and the dual Hamiltonian method in the duality of the XY-plaquette model,” arXiv:2211.01632 [hep-th].
  36. M. Cheng and N. Seiberg, “Lieb-Schultz-Mattis, Luttinger, and ’t Hooft – anomaly matching in lattice systems,” arXiv:2211.12543 [cond-mat.str-el].
  37. F. Berruto, M. C. Diamantini, and P. Sodano, “On pure lattice Chern-Simons gauge theories,” Phys. Lett. B 487 (2000) 366–370, arXiv:hep-th/0004203.
  38. H. B. Nielsen and M. Ninomiya, “No Go Theorem for Regularizing Chiral Fermions,” Phys. Lett. 105B (1981) 219–223.
  39. W. Bietenholz, J. Nishimura, and P. Sodano, “Chern-Simons theory on the lattice,” Nucl. Phys. B Proc. Suppl. 119 (2003) 935–937, arXiv:hep-lat/0207010.
  40. W. Bietenholz and P. Sodano, “A Ginsparg-Wilson approach to lattice Chern-Simons theory,” arXiv:hep-lat/0305006.
  41. P. H. Ginsparg and K. G. Wilson, “A Remnant of Chiral Symmetry on the Lattice,” Phys. Rev. D25 (1982) 2649.
  42. M. Lüscher, “Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation,” Phys. Lett. B 428 (1998) 342–345, arXiv:hep-lat/9802011.
  43. H. Neuberger, “Exactly massless quarks on the lattice,” Phys. Lett. B 417 (1998) 141–144, arXiv:hep-lat/9707022.
  44. R. Kantor and L. Susskind, “A Lattice model of fractional statistics,” Nucl. Phys. B 366 (1991) 533–568.
  45. D. H. Adams, “A Doubled discretization of Abelian Chern-Simons theory,” Phys. Rev. Lett. 78 (1997) 4155–4158, arXiv:hep-th/9704150.
  46. D. H. Adams, “R torsion and linking numbers from simplicial Abelian gauge theories,” arXiv:hep-th/9612009.
  47. T. Z. Olesen, N. D. Vlasii, and U. J. Wiese, “From doubled Chern–Simons–Maxwell lattice gauge theory to extensions of the toric code,” Annals Phys. 361 (2015) 303–329, arXiv:1503.07023 [hep-lat].
  48. T. Banks and B. Zhang, “Lattice BF theory, dumbbells, and composite fermions,” Nucl. Phys. B 981 (2022) 115877, arXiv:2112.08316 [hep-th].
  49. R. Kobayashi and M. Barkeshli, “(3+1)D path integral state sums on curved U(1) bundles and U(1) anomalies of (2+1)D topological phases,” arXiv:2111.14827 [cond-mat.str-el].
  50. N. E. Steenrod, “Products of cocycles and extensions of mappings,” Annals of Mathematics 48 (1947) 290.
  51. A. Kapustin and R. Thorngren, “Topological Field Theory on a Lattice, Discrete Theta-Angles and Confinement,” Adv. Theor. Math. Phys. 18 no. 5, (2014) 1233–1247, arXiv:1308.2926 [hep-th].
  52. A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
  53. Y.-A. Chen and A. Kapustin, “Bosonization in three spatial dimensions and a 2-form gauge theory,” Phys. Rev. B 100 no. 24, (2019) 245127, arXiv:1807.07081 [cond-mat.str-el].
  54. Y.-A. Chen, “Exact bosonization in arbitrary dimensions,” Phys. Rev. Res. 2 no. 3, (2020) 033527, arXiv:1911.00017 [cond-mat.str-el].
  55. S. Tata, “Geometrically Interpreting Higher Cup Products, and Application to Combinatorial Pin Structures,” arXiv:2008.10170 [hep-th].
  56. Y.-A. Chen and S. Tata, “Higher cup products on hypercubic lattices: application to lattice models of topological phases,” arXiv:2106.05274 [cond-mat.str-el].
  57. Y.-A. Chen and P.-S. Hsin, “Exactly Solvable Lattice Hamiltonians and Gravitational Anomalies,” arXiv:2110.14644 [cond-mat.str-el].
  58. R. Thorngren, “Topological quantum field theory, symmetry breaking, and finite gauge theory in 3+1D,” Phys. Rev. B 101 no. 24, (2020) 245160, arXiv:2001.11938 [cond-mat.str-el].
  59. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  60. P.-S. Hsin, H. T. Lam, and N. Seiberg, “Comments on one-form global symmetries and their gauging in 3d and 4d,” SciPost Physics 6 (Mar, 2019) 039. https://doi.org/10.21468%2Fscipostphys.6.3.039.
  61. C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, “Comments on Chern-Simons Contact Terms in Three Dimensions,” JHEP 09 (2012) 091, arXiv:1206.5218 [hep-th].
  62. E. Witten, “Dyons of Charge e theta/2 pi,” Phys. Lett. B 86 (1979) 283–287.
  63. G. ’t Hooft, “Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories,” Nucl. Phys. B190 (1981) 455–478.
  64. J. L. Cardy and E. Rabinovici, “Phase structure of zp models in the presence of a θ𝜃\thetaitalic_θ parameter,” Nuclear Physics B 205 no. 1, (1982) 1–16. https://www.sciencedirect.com/science/article/pii/0550321382904631. Volume B205 [FS5] No. 2 to follow in approximately one month.
  65. J. L. Cardy, “Duality and the θ𝜃\thetaitalic_θ parameter in abelian lattice models,” Nuclear Physics B 205 no. 1, (1982) 17–26. https://www.sciencedirect.com/science/article/pii/0550321382904643. Volume B205 [FS5] No. 2 to follow in approximately one month.
  66. L. S. Pontrjagin, “Mappings of the three-dimensional sphere into an n-dimensional complex,” C. R. (Doklady) Acad. Sci. URSS (N. S.) 34 (1942) 35–37.
  67. J. H. C. Whitehead, “On simply connected, 4-dimensional polyhedra,” Commentarii Mathematici Helvetici 22 no. 1, (1949) 48–92. https://doi.org/10.1007/BF02568048.
  68. C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group global symmetries,” arXiv:1802.04790 [hep-th].
  69. Y. Tanizaki and M. Ünsal, “Modified instanton sum in QCD and higher-groups,” JHEP 03 (2020) 123, arXiv:1912.01033 [hep-th].
  70. T. D. Brennan and C. Cordova, “Axions, Higher-Groups, and Emergent Symmetry,” arXiv:2011.09600 [hep-th].
  71. Y. Hidaka, M. Nitta, and R. Yokokura, “Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics,” arXiv:2009.14368 [hep-th].
  72. J. A. Damia, R. Argurio, and L. Tizzano, “Continuous Generalized Symmetries in Three Dimensions,” arXiv:2206.14093 [hep-th].
  73. N. Seiberg, “Analytic Study of θ𝜃\thetaitalic_θ Vacua on the Lattice,” Phys. Lett. B 148 (1984) 456–460.
  74. M. E. Peskin, “Mandelstam ’t Hooft Duality in Abelian Lattice Models,” Annals Phys. 113 (1978) 122.
  75. C. Dasgupta and B. I. Halperin, “Phase Transition in a Lattice Model of Superconductivity,” Phys. Rev. Lett. 47 (1981) 1556–1560.
  76. Y.-A. Chen, A. Kapustin, and D. Radičević, “Exact bosonization in two spatial dimensions and a new class of lattice gauge theories,” Annals Phys. 393 (2018) 234–253, arXiv:1711.00515 [cond-mat.str-el].
Citations (3)

Summary

We haven't generated a summary for this paper yet.