Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spinodal decomposition and phase separation in polar active matter (2401.09461v1)

Published 4 Jan 2024 in cond-mat.soft

Abstract: We develop and study the hydrodynamic theory of flocking with autochemotaxis. This describes large collections of self-propelled entities all spontaneously moving in the same direction, each emitting a substance which attracts the others (e.g., ants). The theory combines features of the Keller-Segel model for autochemotaxis with the Toner-Tu theory of flocking. We find that sufficiently strong autochemotaxis leads to an instability of the uniformly moving state (the ``flock"), in which bands of different density form moving parallel to the mean flock velocity with different speeds. These bands, which are reminiscent of ant trails, coarsen over time to reach a phase-separated state, in which one high density and one low density band fill the entire system. The same instability, described by the same hydrodynamic theory, can occur in flocks phase separating due to any microscopic mechanism (e.g., sufficiently strong attractive interactions). Although in many ways analogous to equilibrium phase separation via spinodal decomposition, the two steady state densities here are determined not by a common tangent construction, as in equilibrium, but by an uncommon tangent construction very similar to that found for motility induced phase separation (MIPS) of disordered active particles. Our analytic theory agrees well with our numerical simulations of our equations of motion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
  2. J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
  3. P. A. Anderson and G. O. Mackie, Science 197, 186 (1977).
  4. R. Mesibov and J. Adler, J. Bacteriology 112, 315 (1972).
  5. E. Hildebrand and U. B. Kaupp, Ann. N. Y. Acad. Sci. 1061, 221 (2005).
  6. I. D. Couzin and N. R. Franks, Proc. Biol. Sci. 270, 139 (2003).
  7. E. F. Keller and L. A. Segel, Journal of Theoretical Biology 30, 225 (1971a).
  8. E. F. Keller and L. A. Segel, Journal of Theoretical Biology 26, 399 (1970).
  9. E. F. Keller and L. A. Segel, Journal of Theoretical Biology 30, 235 (1971b).
  10. D. Horstmann, Jahresbericht der Deutschen Mathematiker-Vereinigung 105, 103 (2003).
  11. H. Stark, Acc. Chem. Res. 51, 2681 (2018).
  12. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
  13. D. Dormann and C. J. Weijer, Current Opinion in Genetics & Development 16, 367 (2006).
  14. J. Toner, Phys. Rev. E 86, 031918 (2012a).
  15. T. Bertrand and C. F. Lee, Phys. Rev. Res. 4, L022046 (2022).
  16. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  17. M. E. Cates and J. Tailleur, Annual Review of Condensed Matter Physics 6, 219 (2015).
  18. J. Toner, Phys. Rev. Lett. 108, 088102 (2012b).
  19. T. Hillen and K. J. Painter, Journal of Mathematical Biology 58, 183 (2009).
  20. The velocity field in our field equations is not the “true”, or “full”, velocity field. The true velocity field is defined as the velocity that satisfies 𝐉=ρ⁢𝐯𝐉𝜌𝐯\mathbf{J}=\rho\mathbf{v}bold_J = italic_ρ bold_v. The velocity field that we employ is, instead, a proxy for the polarization field of the flock 𝐩^^𝐩\mathbf{\hat{p}}over^ start_ARG bold_p end_ARG, defined as 𝐯=v0⁢p^𝐯subscript𝑣0^𝑝\mathbf{v}=v_{0}\hat{p}bold_v = italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_p end_ARG. Where 𝐩^^𝐩\mathbf{\hat{p}}over^ start_ARG bold_p end_ARG is the local “polarization”; that is, a unit vector along the direction in which the local flockers are pointing, and v0subscript𝑣0v_{0}italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the speed of the boids in a uniform state. By “pointing” here, we mean the direction along which the “motors” with which the flockers are propelling themselves are acting. Because there are many other effects that can lead to a net current of the flockers aside from their self-propulsion (e.g., pressure forces, Brownian noise, etc.), the net current 𝐣𝐣\mathbf{j}bold_j can get additional contributions that are not simply given by ρ⁢𝐯𝜌𝐯\rho\mathbf{v}italic_ρ bold_v, with this definition of 𝐯𝐯\mathbf{v}bold_v. This fact then requires that we include the symmetry allowed k1subscript𝑘1k_{1}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, k1⁢asubscript𝑘1𝑎k_{1a}italic_k start_POSTSUBSCRIPT 1 italic_a end_POSTSUBSCRIPT, k2subscript𝑘2k_{2}italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and k2⁢asubscript𝑘2𝑎k_{2a}italic_k start_POSTSUBSCRIPT 2 italic_a end_POSTSUBSCRIPT terms in the equation of motion III.2. Note that even if we had defined the velocity field via 𝐉=ρ⁢𝐯𝐉𝜌𝐯\mathbf{J}=\rho\mathbf{v}bold_J = italic_ρ bold_v, that exact relation would still have broken down once we coarse grained, since coarse graining means that we have averaged out some of the short-wavelength components of the velocity. The remaining components therefore no longer constitute the full velocity field, and so, in general, will not obey 𝐉=ρ⁢𝐯𝐉𝜌𝐯\mathbf{J}=\rho\mathbf{v}bold_J = italic_ρ bold_v. Operationally, this fact is manifested by the generation of the k1subscript𝑘1k_{1}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, k1⁢asubscript𝑘1𝑎k_{1a}italic_k start_POSTSUBSCRIPT 1 italic_a end_POSTSUBSCRIPT, k2subscript𝑘2k_{2}italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and k2⁢asubscript𝑘2𝑎k_{2a}italic_k start_POSTSUBSCRIPT 2 italic_a end_POSTSUBSCRIPT terms by coarse graining (i.e., by the dynamical RG), even if those terms are absent in the original (bare) model.
  21. M. Miller and J. Toner,  The associated short paper.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com