Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase separation in ordered polar active fluids: A new Universality class (2401.05996v1)

Published 11 Jan 2024 in cond-mat.soft

Abstract: We show that phase separation in ordered polar active fluids belongs to a new universality class. This describes large collections of self-propelled entities (``flocks"), all spontaneously moving in the same direction, in which attractive interactions (which can be caused by, e.g., autochemotaxis) cause phase separation: the system spontaneously separates into a high density band and a low density band, moving parallel to each other, and to the direction of mean flock motion, at different speeds. The upper critical dimension for this transition is $d_c=5$, in contrast to the well-known $d_c=4$ of equilibrium phase separation. We obtain the large-distance, long-time scaling laws of the velocity and density fluctuations, which are characterized by universal critical correlation length and order parameter exponents $\nu_\perp$, $\nu_\parallel$ and $\beta$ respectively. We calculate these to $\mathcal{O} (\epsilon)$ in a $d=5-\epsilon$ expansion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  2. J. Toner, Phys. Rev. Lett. 108, 088102 (2012a).
  3. S. Ramaswamy, Annual Review of Condensed Matter Physics 1, 323 (2010).
  4. J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
  5. J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
  6. M. Miller and J. Toner,   (a).
  7. M. Miller and J. Toner,   (b).
  8. J. Toner, Phys. Rev. E 86, 031918 (2012b).
  9. Note that the “longitudinal” and “tranverse” projection operators Li⁢j⟂(𝐪⟂))L^{\perp}_{ij}({\bf q}_{\perp}))italic_L start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) ) and Pi⁢j⟂⁢(𝐪⟂)subscriptsuperscript𝑃perpendicular-to𝑖𝑗subscript𝐪perpendicular-toP^{\perp}_{ij}({\bf q}_{\perp})italic_P start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT )) that we define here are not quite the conventional longitudinal (Li⁢j⁢(𝐪)subscript𝐿𝑖𝑗𝐪L_{ij}({\bf q})italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q )) and transverse (Pi⁢j⁢(𝐪)subscript𝑃𝑖𝑗𝐪P_{ij}({\bf q})italic_P start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q )) projection operators. The latter project along and perpendicular to the full wvavector 𝐪𝐪{\bf q}bold_q respectively. Our operators Li⁢j⟂⁢(𝐪⟂)subscriptsuperscript𝐿perpendicular-to𝑖𝑗subscript𝐪perpendicular-toL^{\perp}_{ij}({\bf q}_{\perp})italic_L start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT )) and (P⟂(𝐪⟂))i⁢jP^{\perp}({\bf q}_{\perp}))_{ij}italic_P start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT project first perpendicular to the mean velocity (i.e., perpendicular to x^^𝑥\hat{x}over^ start_ARG italic_x end_ARG, or, equivalently, onto the the ⟂perpendicular-to\perp⟂ subspace), and then perpendicular to 𝐪⟂){\bf q}_{\perp})bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) within the ⟂perpendicular-to\perp⟂ subspace.
  10. A. Aharony, Phys. Rev. B 8, 3363 (1973).
  11. E. Brézin and J. Zinn-Justin, Phys. Rev. B 13, 251 (1976).
Citations (1)

Summary

We haven't generated a summary for this paper yet.