Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards large-scale quantum optimization solvers with few qubits (2401.09421v2)

Published 17 Jan 2024 in quant-ph

Abstract: We introduce a variational quantum solver for combinatorial optimizations over $m=\mathcal{O}(nk)$ binary variables using only $n$ qubits, with tunable $k>1$. The number of parameters and circuit depth display mild linear and sublinear scalings in $m$, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. This leads to unprecedented quantum-solver performances. For $m=7000$, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for $m=2000$, an experiment with $n=17$ trapped-ion qubits featured MaxCut approximation ratios estimated to be beyond the hardness threshold $0.941$. To our knowledge, this is the highest quality attained experimentally on such sizes. Our findings offer a novel heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near term quantum devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv  (2014), arXiv:1411.4028 .
  2. G. G. Guerreschi and A. Y. Matsuura, QAOA for max-cut requires hundreds of qubits for quantum speed-up, Scientific Reports 9, 6903 (2019).
  3. J. Wurtz and P. Love, Maxcut quantum approximate optimization algorithm performance guarantees for p>𝑝absentp>italic_p > 1, Physical Review A 103, 042612 (2021).
  4. C. Dürr and P. Hoyer, A quantum algorithm for finding the minimum, CoRR quant-ph/9607014 (1996).
  5. A. Ambainis, Quantum search algorithms, ACM SIGACT News 35, 22 (2004).
  6. A. Montanaro, Quantum speedup of branch-and-bound algorithms, Physical Review Research 2, 013056 (2020).
  7. E. Campbell, A. Khurana, and A. Montanaro, Applying quantum algorithms to constraint satisfaction problems, Quantum 3, 167 (2019).
  8. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  9. D. Stilck França and R. Garcia-Patron, Limitations of optimization algorithms on noisy quantum devices, Nature Physics 17, 1221 (2021).
  10. L. Bittel and M. Kliesch, Training variational quantum algorithms is np-hard, Physical review letters 127, 120502 (2021).
  11. E. R. Anschuetz and B. T. Kiani, Quantum variational algorithms are swamped with traps, Nature Communications 13, 7760 (2022).
  12. D. García-Martín, M. Larocca, and M. Cerezo, Effects of noise on the overparametrization of quantum neural networks, arXiv preprint arXiv:2302.05059  (2023a).
  13. C. Choi and Y. Ye, Solving sparse semidefinite programs using the dual scaling algorithm with an iterative solver, https://web.stanford.edu/~yyye/yyye/cgsdp1.pdf (2000).
  14. S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Mathematical Programming 10.1007/s10107-002-0352-8 (2003).
  15. I. Dunning, S. Gupta, and J. Silberholz, What works best when? a systematic evaluation of heuristics for Max-Cut and QUBO, INFORMS Journal on Computing 30, 608 (2018).
  16. Y. Ye, Gset test problems, https://web.stanford.edu/~yyye/yyye/Gset/ (unpublished).
  17. Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X 7, 021050 (2017).
  18. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
  19. J. D. Biamonte, Nonperturbative k-body to two-body commuting conversion hamiltonians and embedding problem instances into ising spins, Physical Review A 77, 10.1103/physreva.77.052331 (2008).
  20. J. Håstad, Some optimal inapproximability results, J. ACM 48, 798–859 (2001).
  21. M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42, 1115–1145 (1995).
  22. S. Poljak and D. Turzík, A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound, Discrete Mathematics 58, 99 (1986).
  23. S. Bylka, A. Idzik, and Z. Tuza, Maximum cuts: improvementsand local algorithmic analogues of the edwards-erdos inequality, Discrete Mathematics 194, 39 (1999).
  24. G. Rinaldi, Rudy graph generator, http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz (unpublished).
  25. G. Pataki and S. H. Schmieta, The DIMACS library of mixed semidefinite-quadratic-linear programs, http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/ (unpublished).
  26. U. Benlic and J.-K. Hao, Breakout local search for the Max-Cut problem, Engineering Applications of Artificial Intelligence 26, 1162 (2013).
  27. D. García-Martín, M. Larocca, and M. Cerezo, Deep quantum neural networks form gaussian processes (2023b), arXiv:2305.09957 [quant-ph] .
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 35 likes.