Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cross-Domain AI for Early Attack Detection and Defense Against Malicious Flows in O-RAN (2401.09204v1)

Published 17 Jan 2024 in cs.CR and cs.NI

Abstract: Only the chairs can edit In the fight against cyber attacks, Network Softwarization (NS) is a flexible and adaptable shield, using advanced software to spot malicious activity in regular network traffic. However, the availability of comprehensive datasets for mobile networks, which are fundamental for the development of Machine Learning (ML) solutions for attack detection near their source, is still limited. Cross-Domain AI can be the key to address this, although its application in Open Radio Access Network (O-RAN) is still at its infancy. To address these challenges, we deployed an end-to-end O-RAN network, that was used to collect data from the RAN and the transport network. These datasets allow us to combine the knowledge from an in-network ML traffic classifier for attack detection to bolster the training of an ML-based traffic classifier specifically tailored for the RAN. Our results demonstrate the potential of the proposed approach, achieving an accuracy rate of 93%. This approach not only bridges critical gaps in mobile network security but also showcases the potential of cross-domain AI in enhancing the efficacy of network security measures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. C. A. of Cyberspace Studies xiaxueping@ cac. gov. cn, “World cybersecurity development,” in World Internet Development Report 2021: Blue Book for World Internet Conference.   Springer, 2023, pp. 157–172.
  2. A. Popescu and A. Westerhagen, “Network softwarization: Developments and challenges,” in 2022 14th International Conference on Communications (COMM).   IEEE, 2022, pp. 1–6.
  3. S. Kaur, K. Kumar, and N. Aggarwal, “A review on p4-programmable data planes: Architecture, research efforts, and future directions,” Computer Communications, vol. 170, pp. 109–129, 2021.
  4. Q. Qin, K. Poularakis, and L. Tassiulas, “A learning approach with programmable data plane towards iot security,” in 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS).   IEEE, 2020, pp. 410–420.
  5. ——, “Bringing intelligence at the network data plane for internet of things security,” IoT for Defense and National Security, pp. 259–283, 2022.
  6. A. Sha, S. Madhan, S. Neemkar, V. B. C. Varma, and L. S. Nair, “Machine learning integrated software defined networking architecture for congestion control,” in 2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE).   IEEE, 2023, pp. 1–5.
  7. A. Sacco, A. Angi, F. Esposito, and G. Marchetto, “Hint: Supporting congestion control decisions with p4-driven in-band network telemetry,” in 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR).   IEEE, 2023, pp. 83–88.
  8. W.-X. Liu, J. Cai, Y.-H. Zhu, J.-M. Luo, and J. Li, “Load balancing inside programmable data planes based on network modeling prediction using a gnn with network behaviors,” Computer Networks, vol. 227, p. 109695, 2023.
  9. A. H. Alhilali and A. Montazerolghaem, “Artificial intelligence based load balancing in sdn: A comprehensive survey,” Internet of Things, p. 100814, 2023.
  10. Q. Wu, Q. Liu, Z. Jia, N. Xin, and T. Chen, “P4sqa: A p4 switch-based qos assurance mechanism for sdn,” IEEE Transactions on Network and Service Management, 2023.
  11. S. K. Keshari, V. Kansal, and S. Kumar, “A systematic review of quality of services (qos) in software defined networking (sdn),” Wireless Personal Communications, vol. 116, pp. 2593–2614, 2021.
  12. J. Ali, M. Adnan, T. R. Gadekallu, R. H. Jhaveri, and B.-H. Roh, “A qos-aware software defined mobility architecture for named data networking,” in 2022 IEEE Globecom Workshops (GC Wkshps).   IEEE, 2022, pp. 444–449.
  13. X. Zhu and Y. Zhang, “Machine-learning-assisted traffic classification of user activities at programmable data plane,” in 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS).   IEEE, 2022, pp. 01–04.
  14. S. Paramasivam and R. L. Velusamy, “Cor-entc: correlation with ensembled approach for network traffic classification using sdn technology for future networks,” The Journal of Supercomputing, vol. 79, no. 8, pp. 8513–8537, 2023.
  15. B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello, “Map4: A pragmatic framework for in-network machine learning traffic classification,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 4176–4188, 2022.
  16. F. Musumeci, A. C. Fidanci, F. Paolucci, F. Cugini, and M. Tornatore, “Machine-learning-enabled ddos attacks detection in p4 programmable networks,” Journal of Network and Systems Management, vol. 30, pp. 1–27, 2022.
  17. M. Zang, C. Zheng, L. Dittmann, and N. Zilberman, “Towards continuous threat defense: in-network traffic analysis for iot gateways,” IEEE Internet of Things Journal, 2023.
  18. A. Sacco, A. Angi, G. Marchetto, and F. Esposito, “P4fl: An architecture for federating learning with in-network processing,” IEEE Access, 2023.
  19. L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelligence and learning in O-RAN for data-driven nextg cellular networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21–27, 2021.
  20. M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications for centralized and federated learning,” IEEE Access, vol. 10, pp. 40 281–40 306, 2022.
  21. K. Vamsi Krishna, K. Swathi, P. Rama Koteswara Rao, and B. Basaveswara Rao, “A detailed analysis of the cidds-001 and cicids-2017 datasets,” in Pervasive Computing and Social Networking: Proceedings of ICPCSN 2021.   Springer, 2022, pp. 619–638.
  22. B. M. Xavier, M. Dzaferagic, D. Collins, G. Comarela, M. Martinello, and M. Ruffini, “Machine Learning-based Early Attack Detection Using Open RAN Intelligent Controller,” in ICC 2023-IEEE International Conference on Communications.   IEEE, 2023.
  23. J. F. N. Pinheiro, C.-Y. Chang, T. Collins, E. Smekens, R. Berozashvili, A. Shahid, D. De Vleeschauwer, P. Soto, I. Moerman, J. Marquez-Barja et al., “5geco: A cross-domain intelligent neutral host architecture for 5g and beyond,” in IEEE INFOCOM 2023-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).   IEEE, 2023, pp. 1–6.
  24. R. Ferreira, J. Fonseca, J. Silva, M. Tendulkar, P. Duarte, M. Araújo, R. Barbosa, B. Mendes, and A. Goes, “Demo: Enhancing network performance based on 5g network function and slice load analysis,” in 2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2023, pp. 340–342.
  25. O. Alliance, “O-RAN Working Group 2. AI/ML Workflow Description and Requirements (O-RAN. WG2. AIML-v01. 02),” Tech. Rep, 2021.
  26. T. G. Nguyen, T. V. Phan, D. T. Hoang, T. N. Nguyen, and C. So-In, “Efficient sdn-based traffic monitoring in iot networks with double deep q-network,” in International conference on computational data and social networks.   Springer, 2020, pp. 26–38.
  27. Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu, Z. Shen, Y. Xi et al., “Flow event telemetry on programmable data plane,” in Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication, 2020, pp. 76–89.
  28. D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos, and A. Madeira, “Flowlens: Enabling efficient flow classification for ml-based network security applications,” in Proceedings of the Network and Distributed Systems Security (NDSS) Symposium, 2021.
  29. O. Alliance, “O-RAN Working Group 3: Near-Real-time RAN Intelligent Controller E2 Service Model, RAN Control 1.0 (ORAN-WG3. E2SM-RC-v01.00),” Tech. Spec, 2021.
  30. I. Sharafaldin et al., “Toward generating a new intrusion detection dataset and intrusion traffic characterization.” in ICISSP, 2018, p. 108.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com