Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Scalable Ambient Air Pollution Concentration Estimation (2401.08735v1)

Published 16 Jan 2024 in stat.AP and cs.LG

Abstract: Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality. However, the current air pollution monitoring station network in the UK is characterized by spatial sparsity, heterogeneous placement, and frequent temporal data gaps, often due to issues such as power outages. We introduce a scalable data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements. This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution. Leveraging machine learning techniques and real-world data from the sparsely distributed monitoring stations, we generate 355,827 synthetic monitoring stations across the study area, yielding data valued at approximately \pounds70 billion. Validation was conducted to assess the model's performance in forecasting, estimating missing locations, and capturing peak concentrations. The resulting dataset is of particular interest to a diverse range of stakeholders engaged in downstream assessments supported by outdoor air pollution concentration data for NO2, O3, PM10, PM2.5, and SO2. This resource empowers stakeholders to conduct studies at a higher resolution than was previously possible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. Office for Health Improvement and Disparities. (2022) Air pollution: applying All Our Health. Accessed on: 29/11/2023. [Online]. Available: https://www.gov.uk/government/publications/air-pollution-applying-all-our-health/air-pollution-applying-all-our-health
  2. George Eustice and Lord Goldsmith of Richmond Park. (2021) Environment Bill. Accessed on: 29/11/2023. [Online]. Available: https://bills.parliament.uk/bills/2593
  3. UK-AIR. (2019) Modelled air quality data. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/data/modelling-data
  4. World Health Organisation. (2021) What are the WHO Air quality guidelines? Accessed on: 29/11/2023. [Online]. Available: https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guideliness
  5. King’s Printer of Acts of Parliament. (2010) The Air Quality Standards Regulations 2010. Accessed on: 29/11/2023. [Online]. Available: https://www.legislation.gov.uk/uksi/2010/1001/contents/made
  6. E. Assessment, “Guidelines for exposure assessment,” Federal Register, vol. 57, no. 104, pp. 22 888–938, 1992.
  7. B. Zou, J. G. Wilson, F. B. Zhan, and Y. Zeng, “Air pollution exposure assessment methods utilized in epidemiological studies,” Journal of Environmental Monitoring, vol. 11, no. 3, pp. 475–490, 2009.
  8. R. W. Atkinson, A. Analitis, E. Samoli, G. W. Fuller, D. C. Green, I. S. Mudway, H. R. Anderson, and F. J. Kelly, “Short-term exposure to traffic-related air pollution and daily mortality in london, uk,” Journal of exposure science & environmental epidemiology, vol. 26, no. 2, pp. 125–132, 2016.
  9. G. Konstantinoudis, T. Padellini, J. Bennett, B. Davies, M. Ezzati, and M. Blangiardo, “Long-term exposure to air-pollution and covid-19 mortality in england: a hierarchical spatial analysis,” Environment international, vol. 146, p. 106316, 2021.
  10. V. É. Molnár, E. Simon, B. Tóthmérész, S. Ninsawat, and S. Szabó, “Air pollution induced vegetation stress–the air pollution tolerance index as a quick tool for city health evaluation,” Ecological Indicators, vol. 113, p. 106234, 2020.
  11. A. P. Tai, M. V. Martin, and C. L. Heald, “Threat to future global food security from climate change and ozone air pollution,” Nature Climate Change, vol. 4, no. 9, pp. 817–821, 2014.
  12. Y. Kang, L. Aye, T. D. Ngo, and J. Zhou, “Performance evaluation of low-cost air quality sensors: A review,” Science of The Total Environment, vol. 818, p. 151769, 2022.
  13. A. Rosofsky, J. I. Levy, A. Zanobetti, P. Janulewicz, and M. P. Fabian, “Temporal trends in air pollution exposure inequality in massachusetts,” Environmental research, vol. 161, pp. 76–86, 2018.
  14. W. N. Stasiuk Jr and P. E. Coffey, “Rural and urban ozone relationships in new york state,” Journal of the Air Pollution Control Association, vol. 24, no. 6, pp. 564–568, 1974.
  15. Belgian Interregional Environment Agency. (2024) Why are ozone concentrations higher in rural areas than in cities? Accessed on: 05/01/2024. [Online]. Available: https://www.irceline.be/en/documentation/faq/why-are-ozone-concentrations-higher-in-rural-areas-than-in-cities
  16. UK-AIR, DEFRA. (2021) ’Low-cost’ pollution sensors - understanding the uncertainties. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/research/aqeg/pollution-sensors/understanding-uncertainties.php
  17. F. Concas, J. Mineraud, E. Lagerspetz, S. Varjonen, X. Liu, K. Puolamäki, P. Nurmi, and S. Tarkoma, “Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis,” ACM Transactions on Sensor Networks (TOSN), vol. 17, no. 2, pp. 1–44, 2021.
  18. A. C. Rai, P. Kumar, F. Pilla, A. N. Skouloudis, S. Di Sabatino, C. Ratti, A. Yasar, and D. Rickerby, “End-user perspective of low-cost sensors for outdoor air pollution monitoring,” Science of The Total Environment, vol. 607-608, pp. 691–705, Dec. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0048969717316935
  19. N. Castell, F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Broday, and A. Bartonova, “Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?” Environment International, vol. 99, pp. 293–302, Feb. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0160412016309989
  20. J. P. Veefkind, I. Aben, K. McMullan, H. Förster, J. De Vries, G. Otter, J. Claas, H. Eskes, J. De Haan, Q. Kleipool et al., “Tropomi on the esa sentinel-5 precursor: A gmes mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications,” Remote sensing of environment, vol. 120, pp. 70–83, 2012.
  21. ——. (2017) Sentinel-5 Precursor Calibration and Validation Plan for the Operational Phase. Accessed on: 29/11/2023. [Online]. Available: https://sentinels.copernicus.eu/documents/247904/2474724/Sentinel-5P-Calibration-and-Validation-Plan.pdf
  22. P. Zoogman, X. Liu, R. Suleiman, W. Pennington, D. Flittner, J. Al-Saadi, B. Hilton, D. Nicks, M. Newchurch, J. Carr et al., “Tropospheric emissions: Monitoring of pollution (tempo),” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 186, pp. 17–39, 2017.
  23. A. Eliassen, “Aspects of lagrangian air pollution modelling,” in Air Pollution Modeling and Its Application III.   Springer, 1984, pp. 3–21.
  24. Daewon W. Byun, Avraham Lacser, Robert Yamartino, and Paolo Zannetti, “Chapter 10 eulerian dispersion models,” 2003.
  25. M. de’Michieli Vitturi, A. Neri, T. Esposti Ongaro, S. Lo Savio, and E. Boschi, “Lagrangian modeling of large volcanic particles: Application to vulcanian explosions,” Journal of Geophysical Research: Solid Earth, vol. 115, no. B8, 2010.
  26. G. Hoek, R. Beelen, K. De Hoogh, D. Vienneau, J. Gulliver, P. Fischer, and D. Briggs, “A review of land-use regression models to assess spatial variation of outdoor air pollution,” Atmospheric environment, vol. 42, no. 33, pp. 7561–7578, 2008.
  27. D. K. Henze, A. Hakami, and J. H. Seinfeld, “Development of the adjoint of geos-chem,” Atmospheric Chemistry and Physics, vol. 7, no. 9, pp. 2413–2433, 2007. [Online]. Available: https://acp.copernicus.org/articles/7/2413/2007/
  28. B. S. Freeman, G. Taylor, B. Gharabaghi, and J. Thé, “Forecasting air quality time series using deep learning,” Journal of the Air & Waste Management Association, vol. 68, no. 8, pp. 866–886, 2018.
  29. Q. Tao, F. Liu, Y. Li, and D. Sidorov, “Air pollution forecasting using a deep learning model based on 1d convnets and bidirectional gru,” IEEE access, vol. 7, pp. 76 690–76 698, 2019.
  30. K. Harishkumar, K. Yogesh, I. Gad et al., “Forecasting air pollution particulate matter (pm2. 5) using machine learning regression models,” Procedia Computer Science, vol. 171, pp. 2057–2066, 2020.
  31. S. Van Roode, J. Ruiz-Aguilar, J. González-Enrique, and I. Turias, “An artificial neural network ensemble approach to generate air pollution maps,” Environmental monitoring and assessment, vol. 191, pp. 1–15, 2019.
  32. C.-C. Chen, Y.-R. Wang, H.-Y. Yeh, T.-H. Lin, C.-S. Huang, and C.-F. Wu, “Estimating monthly pm2. 5 concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach,” Environmental Pollution, vol. 291, p. 118159, 2021.
  33. Q. He, T. Ye, M. Zhang, and Y. Yuan, “Enhancing the reliability of hindcast modeling for air pollution using history-informed machine learning and satellite remote sensing in china,” Atmospheric Environment, p. 119994, 2023.
  34. J. Li, H. Zhang, C.-Y. Chao, C.-H. Chien, C.-Y. Wu, C. H. Luo, L.-J. Chen, and P. Biswas, “Integrating low-cost air quality sensor networks with fixed and satellite monitoring systems to study ground-level pm2. 5,” Atmospheric Environment, vol. 223, p. 117293, 2020.
  35. D. C. Carslaw and K. Ropkins, “openair — An R package for air quality data analysis,” Environmental Modelling and Software, vol. 27–28, no. 0, pp. 52–61, 2012.
  36. UK-AIR. (2023) Site environment types - Background Station. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/networks/site-types
  37. DEFRA, Department for Environment Food and Rural Affairs. (2017) The Air Quality Data Validation and Ratification Process. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/assets/documents/Data_Validation_and_Ratification_Process_Apr_2017.pdf
  38. ——. (2023) Air quality statistics in the UK, 1987 to 2022 - Background. Accessed on: 29/11/2023. [Online]. Available: https://www.gov.uk/government/statistics/air-quality-statistics/background
  39. T. Crosby, “How to detect and handle outliers,” 1994.
  40. L. J. Berrisford, E. Ribeiro, and R. Menezes, “Estimating ambient air pollution using structural properties of road networks,” arXiv preprint arXiv:2207.14335, 2022.
  41. L. Watkins, “Air pollution from road vehicles,” 1991.
  42. F. Yan, E. Winijkul, S. Jung, T. C. Bond, and D. G. Streets, “Global emission projections of particulate matter (pm): I. exhaust emissions from on-road vehicles,” Atmospheric Environment, vol. 45, no. 28, pp. 4830–4844, 2011.
  43. F. Amato, X. Querol, C. Johansson, C. Nagl, and A. Alastuey, “A review on the effectiveness of street sweeping, washing and dust suppressants as urban pm control methods,” Science of the total environment, vol. 408, no. 16, pp. 3070–3084, 2010.
  44. A. Haagen-Smit, “Urban air pollution,” Advances in Geophysics, vol. 6, pp. 1–18, 1959.
  45. Department of Transport, UK Government. (2023) Road Traffic Stations - About. Accessed on: 29/11/2023. [Online]. Available: https://roadtraffic.dft.gov.uk/about
  46. O. for National Statistics, “2011 census aggregate data,” 2017. [Online]. Available: https://www.ons.gov.uk/census/2011census
  47. J. Sullivan O., Gershuny, “United kingdom time use survey, 2014-2015,” 2023. [Online]. Available: https://beta.ukdataservice.ac.uk/datacatalogue/doi/?id=8128#!#1
  48. X. Jurado, N. Reiminger, J. Vazquez, and C. Wemmert, “On the minimal wind directions required to assess mean annual air pollution concentration based on cfd results,” Sustainable Cities and Society, vol. 71, p. 102920, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210670721002079
  49. R. Cichowicz, G. Wielgosiński, and W. Fetter, “Dispersion of atmospheric air pollution in summer and winter season,” Environmental monitoring and assessment, vol. 189, pp. 1–10, 2017.
  50. J. Wallace, D. Corr, and P. Kanaroglou, “Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys,” Science of the total environment, vol. 408, no. 21, pp. 5086–5096, 2010.
  51. B. J. Bloomer, J. W. Stehr, C. A. Piety, R. J. Salawitch, and R. R. Dickerson, “Observed relationships of ozone air pollution with temperature and emissions,” Geophysical research letters, vol. 36, no. 9, 2009.
  52. D. J. Nowak, P. J. McHale, M. Ibarra, D. Crane, J. C. Stevens, and C. J. Luley, “Modeling the effects of urban vegetation on air pollution,” Air pollution modeling and its application XII, pp. 399–407, 1998.
  53. B. J. Finlayson-Pitts and J. N. Pitts Jr, “Atmospheric chemistry. fundamentals and experimental techniques,” 1986.
  54. O. Jolliet and M. Hauschild, “Modeling the influence of intermittent rain events on long-term fate and transport of organic air pollutants,” Environmental science & technology, vol. 39, no. 12, pp. 4513–4522, 2005.
  55. Q. Yuan, H. B. Guerra, and Y. Kim, “An investigation of the relationships between rainfall conditions and pollutant wash-off from the paved road,” Water, vol. 9, no. 4, p. 232, 2017.
  56. X. Xu, X. Yu, L. Bao, and A. R. Desai, “Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes,” Environmental Pollution, vol. 255, p. 113234, 2019.
  57. G. Ning, S. Wang, S. H. L. Yim, J. Li, Y. Hu, Z. Shang, J. Wang, and J. Wang, “Impact of low-pressure systems on winter heavy air pollution in the northwest sichuan basin, china,” Atmospheric Chemistry and Physics, vol. 18, no. 18, pp. 13 601–13 615, 2018.
  58. F. M. Vukovich, “A note on air quality in high pressure systems,” Atmospheric Environment (1967), vol. 13, no. 2, pp. 255–265, 1979.
  59. H. Hippler, R. Rahn, and J. Troe, “Temperature and pressure dependence of ozone formation rates in the range 1–1000 bar and 90–370 k,” The Journal of chemical physics, vol. 93, no. 9, pp. 6560–6569, 1990.
  60. Y. Xiang, T. Zhang, J. Liu, L. Lv, Y. Dong, and Z. Chen, “Atmosphere boundary layer height and its effect on air pollutants in beijing during winter heavy pollution,” Atmospheric Research, vol. 215, pp. 305–316, 2019.
  61. F. Davies, D. Middleton, and K. Bozier, “Urban air pollution modelling and measurements of boundary layer height,” Atmospheric environment, vol. 41, no. 19, pp. 4040–4049, 2007.
  62. H. Hersbach, “The era5 atmospheric reanalysis.” in AGU fall meeting abstracts, vol. 2016, 2016, pp. NG33D–01.
  63. F. Chaaban, T. Mezher, and M. Ouwayjan, “Options for emissions reduction from power plants: an economic evaluation,” International journal of electrical power & energy systems, vol. 26, no. 1, pp. 57–63, 2004.
  64. Q. Shi and J. Wu, “Review on sulfur compounds in petroleum and its products: State-of-the-art and perspectives,” Energy & Fuels, vol. 35, no. 18, pp. 14 445–14 461, 2021.
  65. J. J. Corbett and P. Fischbeck, “Emissions from ships,” Science, vol. 278, no. 5339, pp. 823–824, 1997.
  66. L. Tao, D. Fairley, M. J. Kleeman, and R. A. Harley, “Effects of switching to lower sulfur marine fuel oil on air quality in the san francisco bay area,” Environmental science & technology, vol. 47, no. 18, pp. 10 171–10 178, 2013.
  67. A. T. Nair, J. Senthilnathan, and S. S. Nagendra, “Emerging perspectives on voc emissions from landfill sites: Impact on tropospheric chemistry and local air quality,” Process safety and environmental protection, vol. 121, pp. 143–154, 2019.
  68. B. Gu, L. Zhang, R. Van Dingenen, M. Vieno, H. J. Van Grinsven, X. Zhang, S. Zhang, Y. Chen, S. Wang, C. Ren et al., “Abating ammonia is more cost-effective than nitrogen oxides for mitigating pm2. 5 air pollution,” Science, vol. 374, no. 6568, pp. 758–762, 2021.
  69. D. J. Nowak et al., “The effects of urban trees on air quality,” USDA Forest Service, pp. 96–102, 2002.
  70. D. J. Nowak, D. E. Crane, and J. C. Stevens, “Air pollution removal by urban trees and shrubs in the united states,” Urban forestry & urban greening, vol. 4, no. 3-4, pp. 115–123, 2006.
  71. A. J. Arnfield, “Street design and urban canyon solar access,” Energy and buildings, vol. 14, no. 2, pp. 117–131, 1990.
  72. M. F. Yassin, “Impact of height and shape of building roof on air quality in urban street canyons,” Atmospheric Environment, vol. 45, no. 29, pp. 5220–5229, 2011.
  73. C. Rowland, R. Morton, L. Carrasco, G. McShane, A. O’neil, and C. Wood, “Land cover map 2015 (vector, gb),” NERC Environmental Information Data Centre, vol. 10, 2017.
  74. D. L. Goldberg, S. C. Anenberg, G. H. Kerr, A. Mohegh, Z. Lu, and D. G. Streets, “Tropomi no2 in the united states: A detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface no2 concentrations,” Earth’s future, vol. 9, no. 4, p. e2020EF001665, 2021.
  75. J. Garland and R. Derwent, “Destruction at the ground and the diurnal cycle of concentration of ozone and other gases,” Quarterly Journal of the Royal Meteorological Society, vol. 105, no. 443, pp. 169–183, 1979.
  76. T. Su, Z. Li, and R. Kahn, “Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over china: regional pattern and influencing factors,” Atmospheric Chemistry and Physics, vol. 18, no. 21, pp. 15 921–15 935, 2018.
  77. S. Beirle, U. Platt, M. Wenig, and T. Wagner, “Weekly cycle of no 2 by gome measurements: a signature of anthropogenic sources,” Atmospheric Chemistry and Physics, vol. 3, no. 6, pp. 2225–2232, 2003.
  78. J. K. Gietl and O. Klemm, “Analysis of traffic and meteorology on airborne particulate matter in münster, northwest germany,” Journal of the Air & Waste Management Association, vol. 59, no. 7, pp. 809–818, 2009.
  79. X. Feng, Q. Li, Y. Zhu, J. Wang, H. Liang, and R. Xu, “Formation and dominant factors of haze pollution over beijing and its peripheral areas in winter,” Atmospheric Pollution Research, vol. 5, no. 3, pp. 528–538, 2014.
  80. K. Meng, X. Xu, X. Cheng, X. Xu, X. Qu, W. Zhu, C. Ma, Y. Yang, and Y. Zhao, “Spatio-temporal variations in so2 and no2 emissions caused by heating over the beijing-tianjin-hebei region constrained by an adaptive nudging method with omi data,” Science of the total environment, vol. 642, pp. 543–552, 2018.
  81. Q. Li, H. Zhang, X. Jin, X. Cai, and Y. Song, “Mechanism of haze pollution in summer and its difference with winter in the north china plain,” Science of The Total Environment, vol. 806, p. 150625, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S004896972105703X
  82. United States Environmental Protection Agency. (2023) Ground-level Ozone Basics. Accessed on: 29/11/2023. [Online]. Available: https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics
  83. UK National Atmospheric Emissions Inventory (NAEI). (2023) Pollutant information: Non Methane VOC. Accessed on: 29/11/2023. [Online]. Available: https://naei.beis.gov.uk/overview/pollutants?pollutant_id=9#:~:text=NMVOCs%20are%20emitted%20to%20air,over%20a%20large%20spatial%20scale.
  84. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural information processing systems, vol. 30, 2017.
  85. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.   Curran Associates, Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
  86. T. O. Hodson, “Root-mean-square error (rmse) or mean absolute error (mae): When to use them or not,” Geoscientific Model Development, vol. 15, no. 14, pp. 5481–5487, 2022.
  87. L. Yang, J. Yang, M. Liu, X. Sun, T. Li, Y. Guo, K. Hu, M. L. Bell, Q. Cheng, H. Kan et al., “Nonlinear effect of air pollution on adult pneumonia hospital visits in the coastal city of qingdao, china: A time-series analysis,” Environmental Research, vol. 209, p. 112754, 2022.
  88. B. Zhao, S. Wang, D. Ding, W. Wu, X. Chang, J. Wang, J. Xing, C. Jang, J. S. Fu, Y. Zhu et al., “Nonlinear relationships between air pollutant emissions and pm2. 5-related health impacts in the beijing-tianjin-hebei region,” Science of the Total Environment, vol. 661, pp. 375–385, 2019.
  89. A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.
  90. Microsoft. (2023) LightGBM - Parameters. Accessed on: 29/11/2023. [Online]. Available: https://lightgbm.readthedocs.io/en/latest/Parameters.html
  91. Salil Mishra. (2023) Hyper parameter optimization - suggested parameter grid · ISSUE #695 · Microsoft/LIGHTGBM. Accessed on: 29/11/2023. [Online]. Available: https://github.com/microsoft/LightGBM/issues/695
  92. ——. (2023) Closed AURN Monitoring Sites. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/networks/aurn-sites
  93. ——. (2023) Interactive monitoring networks map. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/interactive-map
  94. ——. (2023) FAQ - What is the definition of Running annual mean and Running 8hr mean. . Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/air-pollution/faq?question=20
  95. M. P. Adams, M. D. Tarn, A. Sanchez-Marroquin, G. C. Porter, D. O’Sullivan, A. D. Harrison, Z. Cui, J. Vergara-Temprado, F. Carotenuto, M. A. Holden et al., “A major combustion aerosol event had a negligible impact on the atmospheric ice-nucleating particle population,” Journal of Geophysical Research: Atmospheres, vol. 125, no. 22, p. e2020JD032938, 2020.
  96. ESA. (2024) Introducing MTG. Accessed on: 04/01/2024. [Online]. Available: https://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/meteosat_third_generation/Introducing_MTG
  97. EUMETSAT. (2024) Sentinel-4. Accessed on: 04/01/2024. [Online]. Available: https://www.eumetsat.int/sentinel-4
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets