Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-Driven Supervised Machine Learning Approach to Estimating Global Ambient Air Pollution Concentrations With Associated Prediction Intervals (2402.10248v1)

Published 15 Feb 2024 in cs.LG and cs.AI

Abstract: Global ambient air pollution, a transboundary challenge, is typically addressed through interventions relying on data from spatially sparse and heterogeneously placed monitoring stations. These stations often encounter temporal data gaps due to issues such as power outages. In response, we have developed a scalable, data-driven, supervised machine learning framework. This model is designed to impute missing temporal and spatial measurements, thereby generating a comprehensive dataset for pollutants including NO$2$, O$_3$, PM${10}$, PM$_{2.5}$, and SO$_2$. The dataset, with a fine granularity of 0.25${\circ}$ at hourly intervals and accompanied by prediction intervals for each estimate, caters to a wide range of stakeholders relying on outdoor air pollution data for downstream assessments. This enables more detailed studies. Additionally, the model's performance across various geographical locations is examined, providing insights and recommendations for strategic placement of future monitoring stations to further enhance the model's accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (104)
  1. B. Hoffmann, H. Boogaard, A. de Nazelle, Z. J. Andersen, M. Abramson, M. Brauer, B. Brunekreef, F. Forastiere, W. Huang, H. Kan et al., “Who air quality guidelines 2021–aiming for healthier air for all: a joint statement by medical, public health, scientific societies and patient representative organisations,” International journal of public health, vol. 66, p. 1604465, 2021.
  2. UK-AIR, DEFRA. (2023) Daily Air Quality Index. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/air-pollution/daqi
  3. E. Boldo, S. Medina, A. Le Tertre, F. Hurley, H.-G. Mücke, F. Ballester, I. Aguilera, and D. E. on behalf of the Apheis group, “Apheis: Health impact assessment of long-term exposure to pm 2.5 in 23 european cities,” European journal of epidemiology, vol. 21, pp. 449–458, 2006.
  4. M. Ashmore, “Assessing the future global impacts of ozone on vegetation,” Plant, Cell & Environment, vol. 28, no. 8, pp. 949–964, 2005.
  5. A. Hajat, C. Hsia, and M. S. O’Neill, “Socioeconomic disparities and air pollution exposure: a global review,” Current environmental health reports, vol. 2, pp. 440–450, 2015.
  6. M. Vieno, M. R. Heal, M. M. Twigg, I. A. MacKenzie, C. F. Braban, J. Lingard, S. Ritchie, R. Beck, A. Móring, R. Ots et al., “The uk particulate matter air pollution episode of march–april 2014: more than saharan dust,” Environmental Research Letters, vol. 11, no. 4, p. 044004, 2016.
  7. M. L. Bell, R. Goldberg, C. Hogrefe, P. L. Kinney, K. Knowlton, B. Lynn, J. Rosenthal, C. Rosenzweig, and J. A. Patz, “Climate change, ambient ozone, and health in 50 us cities,” Climatic Change, vol. 82, pp. 61–76, 2007.
  8. M. Goss, D. L. Swain, J. T. Abatzoglou, A. Sarhadi, C. A. Kolden, A. P. Williams, and N. S. Diffenbaugh, “Climate change is increasing the likelihood of extreme autumn wildfire conditions across california,” Environmental Research Letters, vol. 15, no. 9, p. 094016, 2020.
  9. W. Knorr, F. Dentener, J.-F. Lamarque, L. Jiang, and A. Arneth, “Wildfire air pollution hazard during the 21st century,” Atmospheric Chemistry and Physics, vol. 17, no. 14, pp. 9223–9236, 2017.
  10. D. E. Horton, C. B. Skinner, D. Singh, and N. S. Diffenbaugh, “Occurrence and persistence of future atmospheric stagnation events,” Nature climate change, vol. 4, no. 8, pp. 698–703, 2014.
  11. K. E. Trenberth, “Changes in precipitation with climate change,” Climate research, vol. 47, no. 1-2, pp. 123–138, 2011.
  12. Y. Kang, L. Aye, T. D. Ngo, and J. Zhou, “Performance evaluation of low-cost air quality sensors: A review,” Science of The Total Environment, vol. 818, p. 151769, 2022.
  13. UK-AIR, DEFRA. (2021) ’Low-cost’ pollution sensors - understanding the uncertainties. Accessed on: 29/11/2023. [Online]. Available: https://uk-air.defra.gov.uk/research/aqeg/pollution-sensors/understanding-uncertainties.php
  14. F. Concas, J. Mineraud, E. Lagerspetz, S. Varjonen, X. Liu, K. Puolamäki, P. Nurmi, and S. Tarkoma, “Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis,” ACM Transactions on Sensor Networks (TOSN), vol. 17, no. 2, pp. 1–44, 2021.
  15. N. Castell, F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Broday, and A. Bartonova, “Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?” Environment International, vol. 99, pp. 293–302, Feb. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0160412016309989
  16. J. P. Veefkind, I. Aben, K. McMullan, H. Förster, J. De Vries, G. Otter, J. Claas, H. Eskes, J. De Haan, Q. Kleipool et al., “Tropomi on the esa sentinel-5 precursor: A gmes mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications,” Remote sensing of environment, vol. 120, pp. 70–83, 2012.
  17. ——. (2017) Sentinel-5 Precursor Calibration and Validation Plan for the Operational Phase. Accessed on: 29/11/2023. [Online]. Available: https://sentinels.copernicus.eu/documents/247904/2474724/Sentinel-5P-Calibration-and-Validation-Plan.pdf
  18. P. Zoogman, X. Liu, R. Suleiman, W. Pennington, D. Flittner, J. Al-Saadi, B. Hilton, D. Nicks, M. Newchurch, J. Carr et al., “Tropospheric emissions: Monitoring of pollution (tempo),” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 186, pp. 17–39, 2017.
  19. A. Eliassen, “Aspects of lagrangian air pollution modelling,” in Air Pollution Modeling and Its Application III.   Springer, 1984, pp. 3–21.
  20. Daewon W. Byun, Avraham Lacser, Robert Yamartino, and Paolo Zannetti, “Chapter 10 eulerian dispersion models,” 2003.
  21. Z. Zlatev, J. Christensen, and Ø. Hov, “A eulerian air pollution model for europe with nonlinear chemistry,” Journal of Atmospheric Chemistry, vol. 15, pp. 1–37, 1992.
  22. M. de’Michieli Vitturi, A. Neri, T. Esposti Ongaro, S. Lo Savio, and E. Boschi, “Lagrangian modeling of large volcanic particles: Application to vulcanian explosions,” Journal of Geophysical Research: Solid Earth, vol. 115, no. B8, 2010.
  23. D. K. Henze, A. Hakami, and J. H. Seinfeld, “Development of the adjoint of geos-chem,” Atmospheric Chemistry and Physics, vol. 7, no. 9, pp. 2413–2433, 2007. [Online]. Available: https://acp.copernicus.org/articles/7/2413/2007/
  24. G. Hoek, R. Beelen, K. De Hoogh, D. Vienneau, J. Gulliver, P. Fischer, and D. Briggs, “A review of land-use regression models to assess spatial variation of outdoor air pollution,” Atmospheric environment, vol. 42, no. 33, pp. 7561–7578, 2008.
  25. B. S. Freeman, G. Taylor, B. Gharabaghi, and J. Thé, “Forecasting air quality time series using deep learning,” Journal of the Air & Waste Management Association, vol. 68, no. 8, pp. 866–886, 2018.
  26. Q. Tao, F. Liu, Y. Li, and D. Sidorov, “Air pollution forecasting using a deep learning model based on 1d convnets and bidirectional gru,” IEEE access, vol. 7, pp. 76 690–76 698, 2019.
  27. K. Harishkumar, K. Yogesh, I. Gad et al., “Forecasting air pollution particulate matter (pm2. 5) using machine learning regression models,” Procedia Computer Science, vol. 171, pp. 2057–2066, 2020.
  28. S. Van Roode, J. Ruiz-Aguilar, J. González-Enrique, and I. Turias, “An artificial neural network ensemble approach to generate air pollution maps,” Environmental monitoring and assessment, vol. 191, pp. 1–15, 2019.
  29. C.-C. Chen, Y.-R. Wang, H.-Y. Yeh, T.-H. Lin, C.-S. Huang, and C.-F. Wu, “Estimating monthly pm2. 5 concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach,” Environmental Pollution, vol. 291, p. 118159, 2021.
  30. Q. He, T. Ye, M. Zhang, and Y. Yuan, “Enhancing the reliability of hindcast modeling for air pollution using history-informed machine learning and satellite remote sensing in china,” Atmospheric Environment, p. 119994, 2023.
  31. J. Li, H. Zhang, C.-Y. Chao, C.-H. Chien, C.-Y. Wu, C. H. Luo, L.-J. Chen, and P. Biswas, “Integrating low-cost air quality sensor networks with fixed and satellite monitoring systems to study ground-level pm2. 5,” Atmospheric Environment, vol. 223, p. 117293, 2020.
  32. L. J. Berrisford, E. Ribeiro, and R. Menezes, “Estimating ambient air pollution using structural properties of road networks,” arXiv preprint arXiv:2207.14335, 2022.
  33. L. J. Berrisford, L. S. Neal, H. J. Buttery, B. R. Evans, and R. Menezes, “A framework for scalable ambient air pollution concentration estimation,” arXiv preprint arXiv:2401.08735, 2024.
  34. OpenAQ. (2023) About Us. Accessed on: 29/11/2023. [Online]. Available: https://openaq.org/about/
  35. D. L. Goldberg, S. C. Anenberg, G. H. Kerr, A. Mohegh, Z. Lu, and D. G. Streets, “Tropomi no2 in the united states: A detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface no2 concentrations,” Earth’s future, vol. 9, no. 4, p. e2020EF001665, 2021.
  36. J. Garland and R. Derwent, “Destruction at the ground and the diurnal cycle of concentration of ozone and other gases,” Quarterly Journal of the Royal Meteorological Society, vol. 105, no. 443, pp. 169–183, 1979.
  37. S. Beirle, U. Platt, M. Wenig, and T. Wagner, “Weekly cycle of no 2 by gome measurements: a signature of anthropogenic sources,” Atmospheric Chemistry and Physics, vol. 3, no. 6, pp. 2225–2232, 2003.
  38. J. K. Gietl and O. Klemm, “Analysis of traffic and meteorology on airborne particulate matter in münster, northwest germany,” Journal of the Air & Waste Management Association, vol. 59, no. 7, pp. 809–818, 2009.
  39. X. Feng, Q. Li, Y. Zhu, J. Wang, H. Liang, and R. Xu, “Formation and dominant factors of haze pollution over beijing and its peripheral areas in winter,” Atmospheric Pollution Research, vol. 5, no. 3, pp. 528–538, 2014.
  40. K. Meng, X. Xu, X. Cheng, X. Xu, X. Qu, W. Zhu, C. Ma, Y. Yang, and Y. Zhao, “Spatio-temporal variations in so2 and no2 emissions caused by heating over the beijing-tianjin-hebei region constrained by an adaptive nudging method with omi data,” Science of the total environment, vol. 642, pp. 543–552, 2018.
  41. Q. Li, H. Zhang, X. Jin, X. Cai, and Y. Song, “Mechanism of haze pollution in summer and its difference with winter in the north china plain,” Science of The Total Environment, vol. 806, p. 150625, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S004896972105703X
  42. R. Cichowicz, G. Wielgosiński, and W. Fetter, “Dispersion of atmospheric air pollution in summer and winter season,” Environmental monitoring and assessment, vol. 189, pp. 1–10, 2017.
  43. X. Jurado, N. Reiminger, J. Vazquez, and C. Wemmert, “On the minimal wind directions required to assess mean annual air pollution concentration based on cfd results,” Sustainable Cities and Society, vol. 71, p. 102920, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210670721002079
  44. J. Wallace, D. Corr, and P. Kanaroglou, “Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys,” Science of the total environment, vol. 408, no. 21, pp. 5086–5096, 2010.
  45. B. J. Bloomer, J. W. Stehr, C. A. Piety, R. J. Salawitch, and R. R. Dickerson, “Observed relationships of ozone air pollution with temperature and emissions,” Geophysical research letters, vol. 36, no. 9, 2009.
  46. B. J. Finlayson-Pitts and J. N. Pitts Jr, “Atmospheric chemistry. fundamentals and experimental techniques,” 1986.
  47. D. J. Nowak, P. J. McHale, M. Ibarra, D. Crane, J. C. Stevens, and C. J. Luley, “Modeling the effects of urban vegetation on air pollution,” Air pollution modeling and its application XII, pp. 399–407, 1998.
  48. O. Jolliet and M. Hauschild, “Modeling the influence of intermittent rain events on long-term fate and transport of organic air pollutants,” Environmental science & technology, vol. 39, no. 12, pp. 4513–4522, 2005.
  49. Q. Yuan, H. B. Guerra, and Y. Kim, “An investigation of the relationships between rainfall conditions and pollutant wash-off from the paved road,” Water, vol. 9, no. 4, p. 232, 2017.
  50. X. Xu, X. Yu, L. Bao, and A. R. Desai, “Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes,” Environmental Pollution, vol. 255, p. 113234, 2019.
  51. G. Ning, S. Wang, S. H. L. Yim, J. Li, Y. Hu, Z. Shang, J. Wang, and J. Wang, “Impact of low-pressure systems on winter heavy air pollution in the northwest sichuan basin, china,” Atmospheric Chemistry and Physics, vol. 18, no. 18, pp. 13 601–13 615, 2018.
  52. F. M. Vukovich, “A note on air quality in high pressure systems,” Atmospheric Environment (1967), vol. 13, no. 2, pp. 255–265, 1979.
  53. H. Hippler, R. Rahn, and J. Troe, “Temperature and pressure dependence of ozone formation rates in the range 1–1000 bar and 90–370 k,” The Journal of chemical physics, vol. 93, no. 9, pp. 6560–6569, 1990.
  54. Y. Xiang, T. Zhang, J. Liu, L. Lv, Y. Dong, and Z. Chen, “Atmosphere boundary layer height and its effect on air pollutants in beijing during winter heavy pollution,” Atmospheric Research, vol. 215, pp. 305–316, 2019.
  55. F. Davies, D. Middleton, and K. Bozier, “Urban air pollution modelling and measurements of boundary layer height,” Atmospheric environment, vol. 41, no. 19, pp. 4040–4049, 2007.
  56. H. Hersbach, “The era5 atmospheric reanalysis.” in AGU fall meeting abstracts, vol. 2016, 2016, pp. NG33D–01.
  57. A. Soulie, C. Granier, S. Darras, N. Zilbermann, T. Doumbia, M. Guevara, J.-P. Jalkanen, S. Keita, C. Liousse, M. Crippa, D. Guizzardi, R. Hoesly, and S. J. Smith, “Global anthropogenic emissions (cams-glob-ant) for the copernicus atmosphere monitoring service simulations of air quality forecasts and reanalyses,” Earth Syst. Sci. Data, 2023.
  58. C. Granier, S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, M. Gauss, M. Guevara, J.-P. Jalkanen, J. Kuenen, C. Liousse, B. Quack, D. Simpson, and K. Sindelarova, “The copernicus atmosphere monitoring service global and regional emissions (april 2019 version),” 4 2019, report, April 2019 version.
  59. ECCAD. (2023) About Us. Accessed on: 29/11/2023. [Online]. Available: https://eccad.aeris-data.fr/context/
  60. F. M. Adebiyi, “Air quality and management in petroleum refining industry: A review,” Environmental Chemistry and Ecotoxicology, vol. 4, pp. 89–96, 2022.
  61. J. J. Corbett and P. Fischbeck, “Emissions from ships,” Science, vol. 278, no. 5339, pp. 823–824, 1997.
  62. L. Tao, D. Fairley, M. J. Kleeman, and R. A. Harley, “Effects of switching to lower sulfur marine fuel oil on air quality in the san francisco bay area,” Environmental science & technology, vol. 47, no. 18, pp. 10 171–10 178, 2013.
  63. V. Zisi, H. N. Psaraftis, and T. Zis, “The impact of the 2020 global sulfur cap on maritime co2 emissions,” Maritime Business Review, vol. 6, no. 4, pp. 339–357, 2021.
  64. M. Santacatalina, C. Reche, M. Minguillón, A. Escrig, V. Sanfelix, A. Carratalá, J. Nicolás, E. Yubero, J. Crespo, A. Alastuey et al., “Impact of fugitive emissions in ambient pm levels and composition: A case study in southeast spain,” Science of The Total Environment, vol. 408, no. 21, pp. 4999–5009, 2010.
  65. Y. Qian, L. Scherer, A. Tukker, and P. Behrens, “China’s potential so2 emissions from coal by 2050,” Energy Policy, vol. 147, p. 111856, 2020.
  66. X. Querol, J. Fernández-Turiel, and A. López-Soler, “Trace elements in coal and their behaviour during combustion in a large power station,” Fuel, vol. 74, no. 3, pp. 331–343, 1995.
  67. Q. Shi and J. Wu, “Review on sulfur compounds in petroleum and its products: State-of-the-art and perspectives,” Energy & Fuels, vol. 35, no. 18, pp. 14 445–14 461, 2021.
  68. F. Chaaban, T. Mezher, and M. Ouwayjan, “Options for emissions reduction from power plants: an economic evaluation,” International journal of electrical power & energy systems, vol. 26, no. 1, pp. 57–63, 2004.
  69. J. Zhang and K. R. Smith, “Household air pollution from coal and biomass fuels in china: measurements, health impacts, and interventions,” Environmental health perspectives, vol. 115, no. 6, pp. 848–855, 2007.
  70. G. Fuller, T. Baker, A. Tremper, D. Green, A. Font, M. Priestman, D. Carslaw, D. Dajnak, and S. Beevers, “Air pollution emissions from diesel trains in london,” King’s College London, 2014.
  71. S. R. Barrett, R. E. Britter, and I. A. Waitz, “Global mortality attributable to aircraft cruise emissions,” Environmental science & technology, vol. 44, no. 19, pp. 7736–7742, 2010.
  72. M. Gonzalez-de Soto, L. Emmi, C. Benavides, I. Garcia, and P. Gonzalez-de Santos, “Reducing air pollution with hybrid-powered robotic tractors for precision agriculture,” Biosystems Engineering, vol. 143, pp. 79–94, 2016.
  73. C. Wang, W. Duan, S. Cheng, and K. Jiang, “Emission inventory and air quality impact of non-road construction equipment in different emission stages,” Science of The Total Environment, p. 167416, 2023.
  74. K. Barati and X. Shen, “Modeling emissions of construction and mining equipment by tracking field operations,” in ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, vol. 32.   IAARC Publications, 2015, p. 1.
  75. L. Watkins, “Air pollution from road vehicles,” 1991.
  76. F. Yan, E. Winijkul, S. Jung, T. C. Bond, and D. G. Streets, “Global emission projections of particulate matter (pm): I. exhaust emissions from on-road vehicles,” Atmospheric Environment, vol. 45, no. 28, pp. 4830–4844, 2011.
  77. S. Archer-Nicholls, E. Carter, R. Kumar, Q. Xiao, Y. Liu, J. Frostad, M. H. Forouzanfar, A. Cohen, M. Brauer, J. Baumgartner et al., “The regional impacts of cooking and heating emissions on ambient air quality and disease burden in china,” Environmental science & technology, vol. 50, no. 17, pp. 9416–9423, 2016.
  78. X. Liang, X. Sun, J. Xu, and D. Ye, “Improved emissions inventory and vocs speciation for industrial ofp estimation in china,” Science of The Total Environment, vol. 745, p. 140838, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S004896972034362X
  79. C. Ehrlich, G. Noll, W.-D. Kalkoff, G. Baumbach, and A. Dreiseidler, “Pm10, pm2. 5 and pm1. 0—emissions from industrial plants—results from measurement programmes in germany,” Atmospheric Environment, vol. 41, no. 29, pp. 6236–6254, 2007.
  80. Y. Guo, L. Zhu, X. Wang, X. Qiu, W. Qian, and L. Wang, “Assessing environmental impact of nox and so2 emissions in textiles production with chemical footprint,” Science of The Total Environment, vol. 831, p. 154961, 2022.
  81. S. A. Meo, “Health hazards of cement dust.” Saudi medical journal, vol. 25, no. 9, pp. 1153–1159, 2004.
  82. A. Cabanes, F. J. Valdés, and A. Fullana, “A review on vocs from recycled plastics,” Sustainable materials and technologies, vol. 25, p. e00179, 2020.
  83. B. Yuan, M. Shao, S. Lu, and B. Wang, “Source profiles of volatile organic compounds associated with solvent use in beijing, china,” Atmospheric Environment, vol. 44, no. 15, pp. 1919–1926, 2010.
  84. M. Lal, “An over view to agriculture! waste burning,” Indian Journal of Air Pollution Control Vol. VIII No. IMarch, pp. 48–50, 2008.
  85. P. Kumar and L. Joshi, “Pollution caused by agricultural waste burning and possible alternate uses of crop stubble: a case study of punjab,” Knowledge systems of societies for adaptation and mitigation of impacts of climate change, pp. 367–385, 2013.
  86. M. Huber-Humer, J. Gebert, and H. Hilger, “Biotic systems to mitigate landfill methane emissions,” Waste Management & Research, vol. 26, no. 1, pp. 33–46, 2008.
  87. A. T. Nair, J. Senthilnathan, and S. S. Nagendra, “Emerging perspectives on voc emissions from landfill sites: Impact on tropospheric chemistry and local air quality,” Process safety and environmental protection, vol. 121, pp. 143–154, 2019.
  88. D. A. Rani, A. Boccaccini, D. Deegan, and C. R. Cheeseman, “Air pollution control residues from waste incineration: current uk situation and assessment of alternative technologies,” Waste Management, vol. 28, no. 11, pp. 2279–2292, 2008.
  89. Y. Law, L. Ye, Y. Pan, and Z. Yuan, “Nitrous oxide emissions from wastewater treatment processes,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 367, no. 1593, pp. 1265–1277, 2012.
  90. K. Sindelarova, J. Markova, D. Simpson, P. Huszar, J. Karlicky, S. Darras, and C. Granier, “High-resolution biogenic global emission inventory for the time period 2000–2019 for air quality modelling,” Earth Syst. Sci. Data, vol. 14, pp. 251–270, 2022.
  91. K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Müller, U. Kuhn, P. Stefani, and W. Knorr, “Global dataset of biogenic voc emissions calculated by the megan model over the last 30 years,” Atmospheric Chemistry & Physics, vol. 14, pp. 9317–9341, 2014, reviewer link to CAMS-GLOB-BIO snapshot dataset for ESSD special issue on surface emissions.
  92. R. C. Hudman, L. T. Murray, D. J. Jacob, D. Millet, S. Turquety, S. Wu, D. Blake, A. Goldstein, J. Holloway, and G. W. Sachse, “Biogenic versus anthropogenic sources of co in the united states,” Geophysical Research Letters, vol. 35, no. 4, 2008.
  93. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural information processing systems, vol. 30, 2017.
  94. V. Van Zoest, A. Stein, and G. Hoek, “Outlier detection in urban air quality sensor networks,” Water, Air, & Soil Pollution, vol. 229, pp. 1–13, 2018.
  95. F. Rollo, C. Bachechi, and L. Po, “Anomaly detection and repairing for improving air quality monitoring,” Sensors, vol. 23, no. 2, p. 640, 2023.
  96. T. O. Hodson, “Root-mean-square error (rmse) or mean absolute error (mae): When to use them or not,” Geoscientific Model Development, vol. 15, no. 14, pp. 5481–5487, 2022.
  97. L. Yang, J. Yang, M. Liu, X. Sun, T. Li, Y. Guo, K. Hu, M. L. Bell, Q. Cheng, H. Kan et al., “Nonlinear effect of air pollution on adult pneumonia hospital visits in the coastal city of qingdao, china: A time-series analysis,” Environmental Research, vol. 209, p. 112754, 2022.
  98. B. Zhao, S. Wang, D. Ding, W. Wu, X. Chang, J. Wang, J. Xing, C. Jang, J. S. Fu, Y. Zhu et al., “Nonlinear relationships between air pollutant emissions and pm2. 5-related health impacts in the beijing-tianjin-hebei region,” Science of the Total Environment, vol. 661, pp. 375–385, 2019.
  99. A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.
  100. Microsoft. (2023) LightGBM - Parameters. Accessed on: 29/11/2023. [Online]. Available: https://lightgbm.readthedocs.io/en/latest/Parameters.html
  101. Salil Mishra. (2023) Hyper parameter optimization - suggested parameter grid · ISSUE #695 · Microsoft/LIGHTGBM. Accessed on: 29/11/2023. [Online]. Available: https://github.com/microsoft/LightGBM/issues/695
  102. A. Ng. (2020) Lecture 8 - data splits, Models and; cross-validation | Stanford CS229: Machine learning (Autumn 2018). Accessed on: 29/11/2023. [Online]. Available: https://www.youtube.com/watch?v=rjbkWSTjHzM
  103. sklearn. (2023) sklearn metric r2 score. Accessed on: 29/11/2023. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
  104. Central Pollution Control Board of India. (2023) Scientific and Technical Activity : (Information Technology) - Integrated Transmission of Real-Time Information from Continuous Ambient Air Quality Monitoring Stations (CAAQMS) to CPCB Server. Accessed on: 29/11/2023. [Online]. Available: https://cpcb.nic.in/uploads/it_technical_activity.pdf
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com