Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recent mathematical advances in coupled cluster theory (2401.07383v1)

Published 14 Jan 2024 in physics.chem-ph, cs.NA, math-ph, math.AG, math.MP, and math.NA

Abstract: This article presents an in-depth educational overview of the latest mathematical developments in coupled cluster (CC) theory, beginning with Schneider's seminal work from 2009 that introduced the first local analysis of CC theory. We offer a tutorial review of second quantization and the CC ansatz, laying the groundwork for understanding the mathematical basis of the theory. This is followed by a detailed exploration of the most recent mathematical advancements in CC theory.Our review starts with an in-depth look at the local analysis pioneered by Schneider which has since been applied to analyze various CC methods. We then move on to discuss the graph-based framework for CC methods developed by Csirik and Laestadius. This framework provides a comprehensive platform for comparing different CC methods, including multireference approaches. Next, we delve into the latest numerical analysis results analyzing the single reference CC method developed by Hassan, Maday, and Wang. This very general approach is based on the invertibility of the CC function's Fr\'echet derivative. We conclude the article with a discussion on the recent incorporation of algebraic geometry into CC theory, highlighting how this novel and fundamentally different mathematical perspective has furthered our understanding and provides exciting pathways to new computational approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. J. S. Arponen, “Independent-cluster methods as mappings of quantum theory into classical mechanics,” Theoretica chimica acta, vol. 80, no. 2-3, pp. 149–179, 1991.
  2. R. Bartlett, “Theory and applications of computational chemistry: the first forty years,” Dykstra, CE, Frenking, G., Kim, KS, Scuseria, GE, Eds, pp. 1191–1221, 2005.
  3. R. J. Bartlett and M. Musiał, “Coupled-cluster theory in quantum chemistry,” Reviews of Modern Physics, vol. 79, no. 1, p. 291, 2007.
  4. D. J. Bates, P. Breiding, T. Chen, J. D. Hauenstein, A. Leykin, and F. Sottile, “Numerical nonlinear algebra,” ArXiv preprint arXiv:2302.08585, 2023.
  5. D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, “Bertini: Software for numerical algebraic geometry,” 2006.
  6. D. N. Bernshtein, “The number of roots of a system of equations,” Funct. Anal. Appl., vol. 9, no. 3, pp. 183–185, Jul 1975.
  7. R. Bishop, “An overview of coupled cluster theory and its applications in physics,” Theoretica chimica acta, vol. 80, no. 2-3, pp. 95–148, 1991.
  8. V. Borovik, B. Sturmfels, and S. Sverrisdóttir, “Coupled cluster degree of the grassmannian,” arXiv:2310.15474, 2023.
  9. P. Breiding and S. Timme, “Homotopycontinuation. jl: A package for homotopy continuation in julia,” in Mathematical Software–ICMS 2018: 6th International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings 6.   Springer, 2018, pp. 458–465.
  10. I. W. Bulik, T. M. Henderson, and G. E. Scuseria, “Can single-reference coupled cluster theory describe static correlation?” Journal of chemical theory and computation, vol. 11, no. 7, pp. 3171–3179, 2015.
  11. T. Chen, T.-L. Lee, and T.-Y. Li, “Hom4ps-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods,” in Mathematical Software–ICMS 2014: 4th International Congress, Seoul, South Korea, August 5-9, 2014. Proceedings 4.   Springer, 2014, pp. 183–190.
  12. J. Čížek, “On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods,” The Journal of Chemical Physics, vol. 45, no. 11, pp. 4256–4266, 1966.
  13. F. Coester, “Bound states of a many-particle system,” Nuclear Physics, vol. 7, pp. 421–424, 1958.
  14. M. A. Csirik and A. Laestadius, “Coupled-cluster theory revisited-part i: Discretization,” ESAIM: Math. Model. Numer. Anal., vol. 57, no. 2, pp. 645–670, 2023.
  15. ——, “Coupled-cluster theory revisited-part ii: Analysis of the single-reference coupled-cluster equations,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 57, no. 2, pp. 545–583, 2023.
  16. D. Davidenko, “On a new method of numerical solution of systems of nonlinear equations,” in Proceedings of the USSR Academy of Sciences, vol. 88, no. 4, 1953, pp. 601–602.
  17. ——, “On the approximate solution of systems of nonlinear equations,” Ukrainian Mathematical Journal, vol. 5, no. 2, pp. 196–206, 1953.
  18. F. Faulstich, B. Sturmfels, and S. Sverrisdóttir, “Algebraic varieties in quantum chemistry,” arXiv:2308.05258, 2023.
  19. F. M. Faulstich, H. E. Kristiansen, M. A. Csirik, S. Kvaal, T. B. Pedersen, and A. Laestadius, “S-diagnostic—an a posteriori error assessment for single-reference coupled-cluster methods,” The Journal of Physical Chemistry A, vol. 127, no. 43, pp. 9106–9120, 2023.
  20. F. M. Faulstich and A. Laestadius, “Homotopy continuation methods for coupled-cluster theory in quantum chemistry,” Molecular Physics, vol. 0, p. e2258599, 2023.
  21. F. M. Faulstich, A. Laestadius, Ö. Legeza, R. Schneider, and S. Kvaal, “Analysis of the tailored coupled-cluster method in quantum chemistry,” SIAM J. Numer. Anal., vol. 57, no. 6, pp. 2579–2607, 2019.
  22. F. M. Faulstich and M. Oster, “Coupled cluster theory: Towards an algebraic geometry formulation,” arXiv:2211.10389 [In press: SIAM Journal on Applied Algebra and Geometry], 2022.
  23. F. M. Faulstich, “Mathematical aspects of coupled-cluster theory in chemistry,” 2020.
  24. C. B. Garcia and W. I. Zangwill, “Finding all solutions to polynomial systems and other systems of equations,” Mathematical Programming, vol. 16, no. 1, pp. 159–176, 1979.
  25. E. Giner, D. P. Tew, Y. Garniron, and A. Alavi, “Interplay between electronic correlation and metal–ligand delocalization in the spectroscopy of transition metal compounds: Case study on a series of planar cu2+ complexes,” Journal of Chemical Theory and Computation, vol. 14, no. 12, pp. 6240–6252, 2018.
  26. M. Hassan, Y. Maday, and Y. Wang, “Analysis of the single reference coupled cluster method for electronic structure calculations: The discrete coupled cluster equations,” arXiv preprint arXiv:2311.00637, 2023.
  27. ——, “Analysis of the single reference coupled cluster method for electronic structure calculations: the full-coupled cluster equations,” Numerische Mathematik, pp. 1–53, 2023.
  28. J. Hubbard, “The description of collective motions in terms of many-body perturbation theory,” Proceedings of the Royal Society A, vol. 240, no. 1223, pp. 539–560, 1957.
  29. J. Hubbard, D. Schleicher, and S. Sutherland, “How to find all roots of complex polynomials by newton’s method,” Inventiones mathematicae, vol. 146, no. 1, p. 1, 2001.
  30. N. Hugenholtz, “Perturbation approach to the fermi gas model of heavy nuclei,” Physica, vol. 23, no. 1-5, pp. 533–545, 1957.
  31. A. G. Kouchnirenko, “Polyèdres de newton et nombres de milnor,” Invent. Math., vol. 32, no. 1, pp. 1–31, Feb 1976.
  32. K. Kowalski and P. Piecuch, “Complete set of solutions of the generalized bloch equation,” Int. J. Quantum Chem., vol. 80, no. 4-5, pp. 757–781, 2000.
  33. K. Kowalski and K. Jankowski, “Towards complete solutions to systems of nonlinear equations of many-electron theories,” Phys. Rev. Lett., vol. 81, no. 6, p. 1195, 1998.
  34. K. Kowalski and P. Piecuch, “Complete set of solutions of multireference coupled-cluster equations: The state-universal formalism,” Phys. Rev. A, vol. 61, no. 5, p. 052506, 2000.
  35. A. Laestadius and F. M. Faulstich, “The coupled-cluster formalism–a mathematical perspective,” Molecular Physics, vol. 117, no. 17, pp. 2362–2373, 2019.
  36. A. Laestadius and S. Kvaal, “Analysis of the extended coupled-cluster method in quantum chemistry,” SIAM J. Numer. Anal., vol. 56, no. 2, pp. 660–683, 2018.
  37. T.-L. Lee, T.-Y. Li, and C.-H. Tsai, “Hom4ps-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method,” Computing, vol. 83, pp. 109–133, 2008.
  38. A. P. Morgan, A. J. Sommese, and C. W. Wampler, “Computing singular solutions to polynomial systems,” Advances in Applied Mathematics, vol. 13, no. 3, pp. 305–327, 1992.
  39. J. Paldus, P. Piecuch, L. Pylypow, and B. Jeziorski, “Application of hilbert-space coupled-cluster theory to simple (H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT)22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT model systems: Planar models,” Phys. Rev. A, vol. 47, no. 4, p. 2738, 1993.
  40. J. Paldus, “The beginnings of coupled-cluster theory: an eyewitness account,” in Theory and Applications of Computational Chemistry.   Elsevier, 2005, pp. 115–147.
  41. P. Piecuch and K. Kowalski, “In search of the relationship between multiple solutions characterizing coupled-cluster theories,” in Computational chemistry: reviews of current trends, J. Leszczynski, Ed.   World Scientific, 2000, vol. 5, pp. 1–104.
  42. P. Piecuch, S. Zarrabian, J. Paldus, and J. Čížek, “Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. ii. coupled-cluster results for cyclic-polyene model systems,” Phys. Rev. B, vol. 42, no. 6, p. 3351, 1990.
  43. T. Rohwedder, “An analysis for some methods and algorithms of quantum chemistry,” 2010.
  44. ——, “The continuous coupled cluster formulation for the electronic schrödinger equation,” ESAIM: Math. Model. Numer. Anal., vol. 47, no. 2, pp. 421–447, 2013.
  45. T. Rohwedder and R. Schneider, “Error estimates for the coupled cluster method,” ESAIM: Math. Model. Numer. Anal., vol. 47, no. 6, pp. 1553–1582, 2013.
  46. D. Schleicher, “On the number of iterations of newton’s method for complex polynomials,” Ergodic Theory and Dynamical Systems, vol. 22, no. 3, pp. 935–945, 2002.
  47. R. Schneider, “Analysis of the projected coupled cluster method in electronic structure calculation,” Numer. Math., vol. 113, no. 3, pp. 433–471, 2009.
  48. T. Van Voorhis and M. Head-Gordon, “Benchmark variational coupled cluster doubles results,” J. Chem. Phys., vol. 113, no. 20, pp. 8873–8879, 2000.
  49. J. Verschelde, “Algorithm 795: Phcpack: A general-purpose solver for polynomial systems by homotopy continuation,” ACM Transactions on Mathematical Software (TOMS), vol. 25, no. 2, pp. 251–276, 1999.
  50. H. Yserentant, “On the regularity of the electronic schrödinger equation in hilbert spaces of mixed derivatives,” Numerische Mathematik, vol. 98, pp. 731–759, 2004.
  51. T. P. Živković and H. J. Monkhorst, “Analytic connection between configuration–interaction and coupled-cluster solutions,” J. Math. Phys., vol. 19, no. 5, pp. 1007–1022, 1978.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com