Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analysis of The Tailored Coupled-Cluster Method in Quantum Chemistry

Published 15 Feb 2018 in math.NA, cond-mat.str-el, cs.NA, physics.chem-ph, physics.comp-ph, and quant-ph | (1802.05699v2)

Abstract: In quantum chemistry, one of the most important challenges is the static correlation problem when solving the electronic Schr\"odinger equation for molecules in the Born--Oppenheimer approximation. In this article, we analyze the tailored coupled-cluster method (TCC), one particular and promising method for treating molecular electronic-structure problems with static correlation. The TCC method combines the single-reference coupled-cluster (CC) approach with an approximate reference calculation in a subspace [complete active space (CAS)] of the considered Hilbert space that covers the static correlation. A one-particle spectral gap assumption is introduced, separating the CAS from the remaining Hilbert space. This replaces the nonexisting or nearly nonexisting gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital usually encountered in standard single-reference quantum chemistry. The analysis covers, in particular, CC methods tailored by tensor-network states (TNS-TCC methods). The problem is formulated in a nonlinear functional analysis framework, and, under certain conditions such as the aforementioned gap, local uniqueness and existence are proved using Zarantonello's lemma. From the Aubin--Nitsche-duality method, a quadratic error bound valid for TNS-TCC methods is derived, e.g., for linear-tensor-network TCC schemes using the density matrix renormalization group method.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.