High-Performance Photon Number Resolving Detectors for 850-950 nm wavelengths (2401.07265v1)
Abstract: Since their first demonstration in 2001, superconducting-nanowire single-photon detectors have witnessed two decades of great developments. SNSPDs are the detector of choice in most modern quantum optics experiments and are slowly finding their way into other photon starved fields of optics. Until now, however, in nearly all experiments SNSPDs were used as binary detectors, meaning they can only distinguish between 0 and more than 1 photons and photon number information is lost. Recent research works have demonstrated proof of principle photon number resolving (PNR) SNSPDs counting 2 to 5 photons. The photon-number-resolving capability is highly demanded in various quantum-optics experiments, including HOM interference, photonic quantum computing, quantum communication, and non Gaussian quantum state preparation. In particular, PNR detectors at the wavelength range of 850 to 950 nm are of great interest due to the availability of high quality semiconductor quantum dots and high-performance Cesium-based quantum memories. In this paper, we demonstrate NbTiN based SNSPDs with over 94 percent system detection efficiency, sub 11 ps timing jitter for one photon, and sub 7 ps for two photon. More importantly, our detectors resolve up to 7 photons using conventional cryogenic electric readout circuitry. Through theoretical analysis, we show that the current PNR performance of our detectors can still be further improved by improving the signal to noise ratio and bandwidth of our readout circuitry. Our results are promising for the future of optical quantum computing and quantum communication.
- G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” \JournalTitleApplied Physics Letters 79, 705–707 (2001).
- T. Heindel, J.-H. Kim, N. Gregersen, A. Rastelli, and S. Reitzenstein, “Quantum dots for photonic quantum information technology,” \JournalTitleAdv. Opt. Photon. 15, 613–738 (2023).
- L. Ma, O. Slattery, and X. Tang, “Optical quantum memory based on electromagnetically induced transparency,” \JournalTitleJournal of Optics 19, 043001 (2017).
- I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” \JournalTitleNature Photonics 10, 631–641 (2016).
- L. Zhai, G. N. Nguyen, C. Spinnler, J. Ritzmann, M. C. Löbl, A. D. Wieck, A. Ludwig, A. Javadi, and R. J. Warburton, “Quantum interference of identical photons from remote gaas quantum dots,” \JournalTitleNature Nanotechnology 17, 829–833 (2022).
- C. Fabre and N. Treps, “Modes and states in quantum optics,” \JournalTitleReviews of Modern Physics 92, 035005 (2020).
- A. Classen, F. Waldmann, S. Giebel, R. Schneider, D. Bhatti, T. Mehringer, and J. von Zanthier, “Superresolving imaging of arbitrary one-dimensional arrays of thermal light sources using multiphoton interference,” \JournalTitlePhysical Review Letters 117, 253601 (2016).
- D. Menzies and R. Filip, “Gaussian-optimized preparation of non-gaussian pure states,” \JournalTitlePhysical Review A 79, 012313 (2009).
- A. Meda, E. Losero, N. Samantaray, F. Scafirimuto, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” \JournalTitleJournal of Optics 19, 094002 (2017).
- L. Cohen, E. S. Matekole, Y. Sher, D. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum lidar: exploiting photon-number-resolving detection,” \JournalTitlePhysical Review Letters 123, 203601 (2019).
- I. Esmaeil Zadeh, J. Chang, J. W. Los, S. Gyger, A. W. Elshaari, S. Steinhauer, S. N. Dorenbos, and V. Zwiller, “Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications,” \JournalTitleApplied Physics Letters 118 (2021).
- J. Chang, J. Gao, I. Esmaeil Zadeh, A. W. Elshaari, and V. Zwiller, “Nanowire-based integrated photonics for quantum information and quantum sensing,” \JournalTitleNanophotonics 12, 339–358 (2023).
- J. Chang, J. Los, J. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J. Zichi, S. Pereira, H. Urbach, V. Zwiller et al., “Detecting telecom single photons with 99.5- 2.07+ 0.5% system detection efficiency and high time resolution,” \JournalTitleAPL Photonics 6 (2021).
- D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, and V. B. Verma, “Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm,” \JournalTitleOptica 7, 1649–1653 (2020).
- P. Hu, H. Li, L. You, H. Wang, Y. Xiao, J. Huang, X. Yang, W. Zhang, Z. Wang, and X. Xie, “Detecting single infrared photons toward optimal system detection efficiency,” \JournalTitleOptics Express 28, 36884–36891 (2020).
- B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” \JournalTitleNature Photonics 14, 250–255 (2020).
- I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, J. Chang, A. W. Elshaari, J. R. Zichi, Y. J. van Staaden, J. P. Swens, N. Kalhor, A. Guardiani et al., “Efficient single-photon detection with 7.7 ps time resolution for photon-correlation measurements,” \JournalTitleAcs Photonics 7, 1780–1787 (2020).
- L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun et al., “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” \JournalTitleApplied Physics B 102, 867–871 (2011).
- J. Chang, I. E. Zadeh, J. W. Los, J. Zichi, A. Fognini, M. Gevers, S. Dorenbos, S. F. Pereira, P. Urbach, and V. Zwiller, “Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution,” \JournalTitleApplied optics 58, 9803–9807 (2019).
- C. Cirillo, J. Chang, M. Caputo, J. Los, S. Dorenbos, I. Esmaeil Zadeh, and C. Attanasio, “Superconducting nanowire single photon detectors based on disordered nbre films,” \JournalTitleApplied Physics Letters 117 (2020).
- J. Chang, J. W. Los, R. Gourgues, S. Steinhauer, S. Dorenbos, S. F. Pereira, H. P. Urbach, V. Zwiller, and I. E. Zadeh, “Efficient mid-infrared single-photon detection using superconducting nbtin nanowires with high time resolution in a gifford-mcmahon cryocooler,” \JournalTitlePhotonics Research 10, 1063–1070 (2022).
- G. G. Taylor, A. B. Walter, B. Korzh, B. Bumble, S. R. Patel, J. P. Allmaras, A. D. Beyer, R. O’Brient, M. D. Shaw, and E. E. Wollman, “Low-noise single-photon counting superconducting nanowire detectors at infrared wavelengths up to 29 μ𝜇\muitalic_μm,” \JournalTitleOptica 10, 1672–1678 (2023).
- J. Chang and I. Esmaeil Zadeh, “Superconducting single-photon detectors get hot,” \JournalTitleNature Nanotechnology 18, 322–323 (2023).
- I. Charaev, D. Bandurin, A. Bollinger, I. Phinney, I. Drozdov, M. Colangelo, B. Butters, T. Taniguchi, K. Watanabe, X. He et al., “Single-photon detection using high-temperature superconductors,” \JournalTitleNature Nanotechnology 18, 343–349 (2023).
- R. L. Merino, P. Seifert, J. D. Retamal, R. K. Mech, T. Taniguchi, K. Watanabe, K. Kadowaki, R. H. Hadfield, and D. K. Efetov, “Two-dimensional cuprate nanodetector with single telecom photon sensitivity at t= 20 k,” \JournalTitle2D Materials 10, 021001 (2023).
- C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” \JournalTitleOptica 4, 1534–1535 (2017).
- D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting nanowire with impedance-matching taper,” \JournalTitleNano Letters 20, 3858–3863 (2020).
- L. Stasi, G. Gras, R. Berrazouane, M. Perrenoud, H. Zbinden, and F. Bussières, “Fast high-efficiency photon-number-resolving parallel superconducting nanowire single-photon detector,” \JournalTitlePhysical Review Applied 19, 064041 (2023).
- H. He, P.-F. Yang, P.-F. Zhang, G. Li, and T.-C. Zhang, “Single-photon source with sub-mhz linewidth for cesium-based quantum information processing,” \JournalTitleFrontiers of Physics 18, 61303 (2023).
- M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” \JournalTitlePhysical Review A 68, 043814 (2003).
- J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” \JournalTitleIEEE transactions on applied superconductivity 17, 581–585 (2007).
- M. Sidorova, A. D. Semenov, H.-W. Hübers, S. Gyger, and S. Steinhauer, “Phonon heat capacity and self-heating normal domains in nbtin nanostrips,” \JournalTitleSuperconductor Science and Technology 35, 105005 (2022).
- A. J. Kerman, J. K. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” \JournalTitlePhysical review B 79, 100509 (2009).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.