Imaging Shapes of Atomic Nuclei in High-Energy Nuclear Collisions (2401.06625v2)
Abstract: Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
- A. Bohr and B. R. Mottelson, “Nuclear Structure, Vols.I&II,” (1998).
- K. Heyde and J. L. Wood, Phys. Scripta 91, 083008 (2016).
- D. Cline, Ann. Rev. Nucl. Part. Sci. 36, 683 (1986).
- E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017), arXiv:1412.8393 [hep-ph] .
- R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
- H. Schatz et al., Phys. Rept. 294, 167 (1998).
- N. Schunck and D. Regnier, Prog. Part. Nucl. Phys. 125, 103963 (2022), arXiv:2201.02719 [nucl-th] .
- J. Engel and J. Menéndez, Rept. Prog. Phys. 80, 046301 (2017), arXiv:1610.06548 [nucl-th] .
- Y. Toh et al., Phys. Rev. C 87, 041304 (2013).
- K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
- M. Riordan and W. Zajc, Scientific American 294, 34 (2006).
- M. Kunitski et al., Science 348, 551 (2015), arXiv:1512.02036 [physics.atm-clus] .
- T. Endo et al., Science 370, 1072 (2020).
- J. L. Miller, Physics Today 75, 12 (2022), https://pubs.aip.org/physicstoday/article-pdf/75/5/12/16424077/12_1_online.pdf .
- J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
- J. Adams et al. (STAR), Nucl. Phys. A 757, 102 (2005), arXiv:nucl-ex/0501009 .
- K. Adcox et al. (PHENIX), Nucl. Phys. A 757, 184 (2005), arXiv:nucl-ex/0410003 .
- P. Boźek and W. Broniowski, Phys. Rev. C 85, 044910 (2012), arXiv:1203.1810 [nucl-th] .
- B. Alver et al. (PHOBOS), Phys. Rev. C 77, 014906 (2008), arXiv:0711.3724 [nucl-ex] .
- G. Giacalone, Phys. Rev. Lett. 124, 202301 (2020a), arXiv:1910.04673 [nucl-th] .
- J. Jia, Phys. Rev. C 105, 044905 (2022), arXiv:2109.00604 [nucl-th] .
- J. A. Sheikh and K. Hara, Phys. Rev. Lett. 82, 3968 (1999), arXiv:nucl-th/9812051 .
- C. Y. Wu and D. Cline, Phys. Rev. C 54, 2356 (1996).
- M. Anderson et al., Nucl. Instrum. Meth. A 499, 659 (2003), arXiv:nucl-ex/0301015 .
- G. Aad et al. (ATLAS), Phys. Rev. C 107, 054910 (2023), arXiv:2205.00039 [nucl-ex] .
- M. Zhou and J. Jia, Phys. Rev. C 98, 044903 (2018), arXiv:1803.01812 [nucl-th] .
- P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).
- S. Acharya et al. (ALICE), Phys. Lett. B 818, 136354 (2021), arXiv:2102.12180 [nucl-ex] .
- D. Everett et al. (JETSCAPE), Phys. Rev. Lett. 126, 242301 (2021), arXiv:2010.03928 [hep-ph] .
- G. Giacalone, Eur. Phys. J. A 59, 297 (2023), arXiv:2305.19843 [nucl-th] .
- B.-A. Li, Phys. Rev. C 61, 021903 (2000), arXiv:nucl-th/9910030 .
- E. V. Shuryak, Phys. Rev. C 61, 034905 (2000), arXiv:nucl-th/9906062 .
- L. Adamczyk et al. (STAR), Phys. Rev. Lett. 115, 222301 (2015a), arXiv:1505.07812 [nucl-ex] .
- ALICE Collaboration, Phys. Lett. B 784, 82 (2018), arXiv:1805.01832 [nucl-ex] .
- A. M. Sirunyan et al. (CMS), Phys. Rev. C 100, 044902 (2019), arXiv:1901.07997 [hep-ex] .
- G. Aad et al. (ATLAS), Phys. Rev. C 101, 024906 (2020), arXiv:1911.04812 [nucl-ex] .
- G. Giacalone, Phys. Rev. C 102, 024901 (2020b), arXiv:2004.14463 [nucl-th] .
- F. S. Bieser et al., Nucl. Instrum. Meth. A 499, 766 (2003).
- W. J. Llope (STAR), Nucl. Instrum. Meth. A 661, S110 (2012).
- L. Adamczyk et al. (STAR), Phys. Rev. C 92, 024912 (2015b), arXiv:1504.01317 [hep-ex] .
- V. Khachatryan et al. (CMS), Phys. Rev. C 92, 034911 (2015), arXiv:1503.01692 [nucl-ex] .
- G. Aad et al. (ATLAS), Phys. Rev. Lett. 126, 122301 (2021), arXiv:2001.04201 [nucl-ex] .
- R. Nisius, Eur. Phys. J. C 74, 3004 (2014), arXiv:1402.4016 [physics.data-an] .
- R. Barlow, in Conference on Advanced Statistical Techniques in Particle Physics (2002) pp. 134–144, arXiv:hep-ex/0207026 .
- G. Nijs and W. van der Schee, (2023), arXiv:2304.06191 [nucl-th] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.