Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Invariants of surfaces in smooth 4-manifolds from link homology (2401.06600v2)

Published 12 Jan 2024 in math.GT and math.QA

Abstract: We construct analogs of Khovanov-Jacobsson classes and the Rasmussen invariant for links in the boundary of any smooth oriented 4-manifold. The main tools are skein lasagna modules based on equivariant and deformed versions of $\mathfrak{gl}_N$ link homology, for which we prove non-vanishing and decomposition results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. “The Karoubi envelope and Lee’s degeneration of Khovanov homology” arXiv:math.GT/0606542 MR2253455 DOI:10.2140/agt.2006.6.1459 In Algebr. Geom. Topol. 6, 2006, pp. 1459–1469
  2. Michael Ehrig, Daniel Tubbenhauer and Paul Wedrich “Functoriality of colored link homologies” MR3877770 DOI:10.1112/plms.12154 arXiv:1703.06691 In Proc. Lond. Math. Soc. (3) 117.5, 2018, pp. 996–1040 DOI: 10.1112/plms.12154
  3. Bojan Gornik “Note on Khovanov link cohomology” arXiv:math/0402266, 2004
  4. “Seifert surfaces in the 4-ball” arXiv:2205.15283, 2023 arXiv:2205.15283 [math.GT]
  5. Matthew Hogancamp, David E.V. Rose and Paul Wedrich “A Kirby color for Khovanov homology”, 2022 arXiv:2210.05640 [math.GT]
  6. “Khovanov homology and exotic surfaces in the 4-ball” arXiv:2108.04810, 2021
  7. Tamás Kálmán “Maximal Thurston-Bennequin number of +adequate links” MR2399065 DOI:10.1090/S0002-9939-08-09478-1 arXiv:math/0608457 In Proc. Amer. Math. Soc. 136.8, 2008, pp. 2969–2977 DOI: 10.1090/S0002-9939-08-09478-1
  8. Mikhail Khovanov “Link homology and Frobenius extensions” MR2232858 DOI:10.4064/fm190-0-6 arXiv:math/0411447 In Fund. Math. 190, 2006, pp. 179–190 DOI: 10.4064/fm190-0-6
  9. “The genus of embedded surfaces in the projective plane” MR1306022 DOI:10.4310/MRL.1994.v1.n6.a14 In Math. Res. Lett. 1.6, 1994, pp. 797–808 DOI: 10.4310/MRL.1994.v1.n6.a14
  10. Eun Soo Lee “An endomorphism of the Khovanov invariant” MR2173845 DOI:10.1016/j.aim.2004.10.015 arXiv:math.GT/0210213 In Adv. Math. 197.2, 2005, pp. 554–586
  11. “A braided (∞,2)2(\infty,2)( ∞ , 2 )-category of Soergel bimodules”, 2024 arXiv:2401.02956 [math.QA]
  12. “Upsilon-like concordance invariants from 𝔰⁢𝔩n𝔰subscript𝔩𝑛\mathfrak{sl}_{n}fraktur_s fraktur_l start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT knot cohomology” MR3939052 DOI:10.2140/gt.2019.23.745 arXiv:1707.00891 In Geom. Topol. 23.2, 2019, pp. 745–780 DOI: 10.2140/gt.2019.23.745
  13. “A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds” MR4541332 DOI:10.1215/00127094-2022-0039 arXiv:1910.08195 In Duke Math. J. 172.2, 2023, pp. 231–311 DOI: 10.1215/00127094-2022-0039
  14. “Skein lasagna modules for 2-handlebodies” MR4445546 DOI:10.1515/crelle-2022-0021 arXiv:2009.08520 In J. Reine Angew. Math. 788, 2022, pp. 37–76 DOI: 10.1515/crelle-2022-0021
  15. “A Rasmussen invariant for links in ℝ⁢ℙ3ℝsuperscriptℙ3\mathbb{RP}^{3}blackboard_R blackboard_P start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT”, 2023 arXiv:2301.09764 [math.GT]
  16. Scott Morrison, Kevin Walker and Paul Wedrich “Invariants of 4-manifolds from Khovanov-Rozansky link homology” MR4562565 DOI:10.2140/gt.2022.26.3367 arXiv:1907.12194 In Geom. Topol. 26.8, 2022, pp. 3367–3420 DOI: 10.2140/gt.2022.26.3367
  17. Ciprian Manolescu, Kevin Walker and Paul Wedrich “Skein lasagna modules and handle decompositions” MR4589588 DOI:10.1016/j.aim.2023.109071 arXiv:2206.04616 In Adv. Math. 425, 2023, pp. Paper No. 109071\bibrangessep40 DOI: 10.1016/j.aim.2023.109071
  18. Jacob Rasmussen “Khovanov homology and the slice genus” MR2729272 DOI:10.1007/s00222-010-0275-6 arXiv:math/0402131 In Invent. Math. 182.2, 2010, pp. 419–447 DOI: 10.1007/s00222-010-0275-6
  19. Qiuyu Ren “Lee filtration structure of torus links” arXiv:2305.16089, 2023 arXiv:2305.16089 [math.GT]
  20. David E.V. Rose and Paul Wedrich “Deformations of colored 𝔰⁢𝔩⁢(N)𝔰𝔩𝑁\mathfrak{sl}(N)fraktur_s fraktur_l ( italic_N ) link homologies via foams” MR3590355 DOI:10.2140/gt.2016.20.3431 arXiv:1501.02567 In Geom. Topol. 20.6, 2016, pp. 3431–3517 DOI: 10.2140/gt.2016.20.3431
  21. “A closed formula for the evaluation of foams” MR4164001 DOI:10.4171/QT/139 arXiv:1702.04140 In Quantum Topol. 11.3, 2020, pp. 411–487 DOI: 10.4171/qt/139
  22. “Relative Khovanov-Jacobsson classes” MR4562563 DOI:10.2140/agt.2022.22.3983 arXiv:2103.01438 In Algebr. Geom. Topol. 22.8, 2022, pp. 3983–4008 DOI: 10.2140/agt.2022.22.3983

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 7 likes.