2000 character limit reached
Invariants of surfaces in smooth 4-manifolds from link homology (2401.06600v2)
Published 12 Jan 2024 in math.GT and math.QA
Abstract: We construct analogs of Khovanov-Jacobsson classes and the Rasmussen invariant for links in the boundary of any smooth oriented 4-manifold. The main tools are skein lasagna modules based on equivariant and deformed versions of $\mathfrak{gl}_N$ link homology, for which we prove non-vanishing and decomposition results.
- “The Karoubi envelope and Lee’s degeneration of Khovanov homology” arXiv:math.GT/0606542 MR2253455 DOI:10.2140/agt.2006.6.1459 In Algebr. Geom. Topol. 6, 2006, pp. 1459–1469
- Michael Ehrig, Daniel Tubbenhauer and Paul Wedrich “Functoriality of colored link homologies” MR3877770 DOI:10.1112/plms.12154 arXiv:1703.06691 In Proc. Lond. Math. Soc. (3) 117.5, 2018, pp. 996–1040 DOI: 10.1112/plms.12154
- Bojan Gornik “Note on Khovanov link cohomology” arXiv:math/0402266, 2004
- “Seifert surfaces in the 4-ball” arXiv:2205.15283, 2023 arXiv:2205.15283 [math.GT]
- Matthew Hogancamp, David E.V. Rose and Paul Wedrich “A Kirby color for Khovanov homology”, 2022 arXiv:2210.05640 [math.GT]
- “Khovanov homology and exotic surfaces in the 4-ball” arXiv:2108.04810, 2021
- Tamás Kálmán “Maximal Thurston-Bennequin number of +adequate links” MR2399065 DOI:10.1090/S0002-9939-08-09478-1 arXiv:math/0608457 In Proc. Amer. Math. Soc. 136.8, 2008, pp. 2969–2977 DOI: 10.1090/S0002-9939-08-09478-1
- Mikhail Khovanov “Link homology and Frobenius extensions” MR2232858 DOI:10.4064/fm190-0-6 arXiv:math/0411447 In Fund. Math. 190, 2006, pp. 179–190 DOI: 10.4064/fm190-0-6
- “The genus of embedded surfaces in the projective plane” MR1306022 DOI:10.4310/MRL.1994.v1.n6.a14 In Math. Res. Lett. 1.6, 1994, pp. 797–808 DOI: 10.4310/MRL.1994.v1.n6.a14
- Eun Soo Lee “An endomorphism of the Khovanov invariant” MR2173845 DOI:10.1016/j.aim.2004.10.015 arXiv:math.GT/0210213 In Adv. Math. 197.2, 2005, pp. 554–586
- “A braided (∞,2)2(\infty,2)( ∞ , 2 )-category of Soergel bimodules”, 2024 arXiv:2401.02956 [math.QA]
- “Upsilon-like concordance invariants from 𝔰𝔩n𝔰subscript𝔩𝑛\mathfrak{sl}_{n}fraktur_s fraktur_l start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT knot cohomology” MR3939052 DOI:10.2140/gt.2019.23.745 arXiv:1707.00891 In Geom. Topol. 23.2, 2019, pp. 745–780 DOI: 10.2140/gt.2019.23.745
- “A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds” MR4541332 DOI:10.1215/00127094-2022-0039 arXiv:1910.08195 In Duke Math. J. 172.2, 2023, pp. 231–311 DOI: 10.1215/00127094-2022-0039
- “Skein lasagna modules for 2-handlebodies” MR4445546 DOI:10.1515/crelle-2022-0021 arXiv:2009.08520 In J. Reine Angew. Math. 788, 2022, pp. 37–76 DOI: 10.1515/crelle-2022-0021
- “A Rasmussen invariant for links in ℝℙ3ℝsuperscriptℙ3\mathbb{RP}^{3}blackboard_R blackboard_P start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT”, 2023 arXiv:2301.09764 [math.GT]
- Scott Morrison, Kevin Walker and Paul Wedrich “Invariants of 4-manifolds from Khovanov-Rozansky link homology” MR4562565 DOI:10.2140/gt.2022.26.3367 arXiv:1907.12194 In Geom. Topol. 26.8, 2022, pp. 3367–3420 DOI: 10.2140/gt.2022.26.3367
- Ciprian Manolescu, Kevin Walker and Paul Wedrich “Skein lasagna modules and handle decompositions” MR4589588 DOI:10.1016/j.aim.2023.109071 arXiv:2206.04616 In Adv. Math. 425, 2023, pp. Paper No. 109071\bibrangessep40 DOI: 10.1016/j.aim.2023.109071
- Jacob Rasmussen “Khovanov homology and the slice genus” MR2729272 DOI:10.1007/s00222-010-0275-6 arXiv:math/0402131 In Invent. Math. 182.2, 2010, pp. 419–447 DOI: 10.1007/s00222-010-0275-6
- Qiuyu Ren “Lee filtration structure of torus links” arXiv:2305.16089, 2023 arXiv:2305.16089 [math.GT]
- David E.V. Rose and Paul Wedrich “Deformations of colored 𝔰𝔩(N)𝔰𝔩𝑁\mathfrak{sl}(N)fraktur_s fraktur_l ( italic_N ) link homologies via foams” MR3590355 DOI:10.2140/gt.2016.20.3431 arXiv:1501.02567 In Geom. Topol. 20.6, 2016, pp. 3431–3517 DOI: 10.2140/gt.2016.20.3431
- “A closed formula for the evaluation of foams” MR4164001 DOI:10.4171/QT/139 arXiv:1702.04140 In Quantum Topol. 11.3, 2020, pp. 411–487 DOI: 10.4171/qt/139
- “Relative Khovanov-Jacobsson classes” MR4562563 DOI:10.2140/agt.2022.22.3983 arXiv:2103.01438 In Algebr. Geom. Topol. 22.8, 2022, pp. 3983–4008 DOI: 10.2140/agt.2022.22.3983
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.