Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LCB-net: Long-Context Biasing for Audio-Visual Speech Recognition (2401.06390v1)

Published 12 Jan 2024 in cs.SD, cs.MM, and eess.AS

Abstract: The growing prevalence of online conferences and courses presents a new challenge in improving automatic speech recognition (ASR) with enriched textual information from video slides. In contrast to rare phrase lists, the slides within videos are synchronized in real-time with the speech, enabling the extraction of long contextual bias. Therefore, we propose a novel long-context biasing network (LCB-net) for audio-visual speech recognition (AVSR) to leverage the long-context information available in videos effectively. Specifically, we adopt a bi-encoder architecture to simultaneously model audio and long-context biasing. Besides, we also propose a biasing prediction module that utilizes binary cross entropy (BCE) loss to explicitly determine biased phrases in the long-context biasing. Furthermore, we introduce a dynamic contextual phrases simulation to enhance the generalization and robustness of our LCB-net. Experiments on the SlideSpeech, a large-scale audio-visual corpus enriched with slides, reveal that our proposed LCB-net outperforms general ASR model by 9.4%/9.1%/10.9% relative WER/U-WER/B-WER reduction on test set, which enjoys high unbiased and biased performance. Moreover, we also evaluate our model on LibriSpeech corpus, leading to 23.8%/19.2%/35.4% relative WER/U-WER/B-WER reduction over the ASR model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.