Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporation of Confidence Interval into Rate Selection Based on the Extreme Value Theory for Ultra-Reliable Communications (2401.05888v1)

Published 11 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Proper determination of the transmission rate in ultra-reliable low latency communication (URLLC) needs to incorporate a confidence interval (CI) for the estimated parameters due to the large amount of data required for their accurate estimation. In this paper, we propose a framework based on the extreme value theory (EVT) for determining the transmission rate along with its corresponding CI for an ultra-reliable communication system. This framework consists of characterizing the statistics of extreme events by fitting the generalized Pareto distribution (GPD) to the channel tail, deriving the GPD parameters and their associated CIs, and obtaining the transmission rate within a confidence interval. Based on the data collected within the engine compartment of Fiat Linea, we demonstrate the accuracy of the estimated rate obtained through the EVT-based framework considering the confidence interval for the GPD parameters. Additionally, we show that proper estimation of the transmission rate based on the proposed framework requires a lower number of samples compared to the traditional extrapolation-based approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. P. Popovski, J. J. Nielsen, C. Stefanovic, E. De Carvalho, E. Strom, K. F. Trillingsgaard, A.-S. Bana, D. M. Kim, R. Kotaba, J. Park, et al., “Wireless access for ultra-reliable low-latency communication: Principles and building blocks,” IEEE Network, vol. 32, no. 2, pp. 16–23, 2018.
  2. N. Mehrnia and S. Coleri, “Wireless channel modeling based on extreme value theory for ultra-reliable communications,” IEEE Transactions on Wireless Communications, pp. 1–1, 2021.
  3. M. Bennis, M. Debbah, and H. V. Poor, “Ultra reliable and low-latency wireless communication: Tail, risk, and scale,” Proceedings of the IEEE, vol. 106, no. 10, pp. 1834–1853, 2018.
  4. C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-wave multipath clustering and channel modeling,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 3, pp. 1445–1455, 2014.
  5. P. Popovski, Č. Stefanović, J. J. Nielsen, E. De Carvalho, M. Angjelichinoski, K. F. Trillingsgaard, and A.-S. Bana, “Wireless access in ultra-reliable low-latency communication (URLLC),” IEEE Transactions on Communications, vol. 67, no. 8, pp. 5783–5801, 2019.
  6. P. C. F. Eggers, M. Angjelichinoski, and P. Popovski, “Wireless channel modeling perspectives for ultra-reliable communications,” IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp. 2229–2243, 2019.
  7. N. Mehrnia and S. Coleri, “Non-stationary wireless channel modeling approach based on extreme value theory for ultra-reliable communications,” IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8264–8268, 2021.
  8. M. Angjelichinoski, K. F. Trillingsgaard, and P. Popovski, “A statistical learning approach to ultra-reliable low latency communication,” IEEE Transactions on Communications, vol. 67, no. 7, pp. 5153–5166, 2019.
  9. F. Pase, M. Giordani, and M. Zorzi, “On the convergence time of federated learning over wireless networks under imperfect csi,” arXiv preprint arXiv:2104.00331, 2021.
  10. N. Mehrnia and S. Coleri, “Extreme value theory based rate selection for ultra-reliable communications,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2022.
  11. W. Zhang, M. Derakhshani, and S. Lambotharan, “Non-parametric statistical learning for urllc transmission rate control,” in ICC 2021-IEEE International Conference on Communications, pp. 1–6, IEEE, 2021.
  12. S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Predictive ultra-reliable communication: A survival analysis perspective,” IEEE Communications Letters, vol. 25, no. 4, pp. 1221–1225, 2020.
  13. Springer, 2001.
  14. P. de Zea Bermudez and S. Kotz, “Parameter estimation of the generalized pareto distribution—part II,” Journal of Statistical Planning and Inference, vol. 140, no. 6, pp. 1374–1388, 2010.
  15. Y. Chen, A. J. Goldsmith, and Y. C. Eldar, “Backing off from infinity: Performance bounds via concentration of spectral measure for random mimo channels,” IEEE Transactions on Information Theory, vol. 61, no. 1, pp. 366–387, 2014.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com