Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate Extreme Value Theory Based Rate Selection for Ultra-Reliable Communications (2401.05171v2)

Published 10 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Diversity schemes play a vital role in improving the performance of ultra-reliable communication systems by transmitting over two or more communication channels to combat fading and co-channel interference. Determining an appropriate transmission strategy that satisfies ultra-reliability constraint necessitates derivation of statistics of channel in ultra-reliable region and, subsequently, integration of these statistics into rate selection while incorporating a confidence interval to account for potential uncertainties that may arise during estimation. In this paper, we propose a novel framework for ultra-reliable real-time transmission considering both spatial diversities and ultra-reliable channel statistics based on multivariate extreme value theory. First, tail distribution of joint received power sequences obtained from different receivers is modeled while incorporating inter-relations of extreme events occurring rarely based on Poisson point process approach in MEVT. The optimum transmission strategies are then developed by determining optimum transmission rate based on estimated joint tail distribution and incorporating confidence intervals into estimations to cope with the availability of limited data. Finally, system reliability is assessed by utilizing outage probability metric. Through analysis of data obtained from the engine compartment of Fiat Linea, our study showcases the effectiveness of proposed methodology in surpassing traditional extrapolation-based approaches. This innovative method not only achieves a higher transmission rate, but also effectively addresses stringent requirements of ultra-reliability. The findings indicate that proposed rate selection framework offers a viable solution for achieving a desired target error probability by employing a higher transmission rate and reducing the amount of training data compared to conventional rate selection methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. P. Popovski, J. J. Nielsen, C. Stefanovic, E. De Carvalho, E. Strom, K. F. Trillingsgaard, A.-S. Bana, D. M. Kim, R. Kotaba, J. Park, et al., “Wireless access for ultra-reliable low-latency communication: Principles and building blocks,” IEEE Network, vol. 32, no. 2, pp. 16–23, 2018.
  2. C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-wave multipath clustering and channel modeling,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 3, pp. 1445–1455, 2014.
  3. P. Popovski, Č. Stefanović, J. J. Nielsen, E. De Carvalho, M. Angjelichinoski, K. F. Trillingsgaard, and A.-S. Bana, “Wireless access in ultra-reliable low-latency communication (URLLC),” IEEE Transactions on Communications, vol. 67, no. 8, pp. 5783–5801, 2019.
  4. M. Bennis, M. Debbah, and H. V. Poor, “Ultra reliable and low-latency wireless communication: Tail, risk, and scale,” Proceedings of the IEEE, vol. 106, no. 10, pp. 1834–1853, 2018.
  5. P. C. F. Eggers, M. Angjelichinoski, and P. Popovski, “Wireless channel modeling perspectives for ultra-reliable communications,” IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp. 2229–2243, 2019.
  6. M. Angjelichinoski, K. F. Trillingsgaard, and P. Popovski, “A statistical learning approach to ultra-reliable low latency communication,” IEEE Transactions on Communications, vol. 67, no. 7, pp. 5153–5166, 2019.
  7. M. Serror, C. Dombrowski, K. Wehrle, and J. Gross, “Channel coding versus cooperative arq: Reducing outage probability in ultra-low latency wireless communications,” in 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6, Dec 2015.
  8. G. Pocovi, B. Soret, M. Lauridsen, K. I. Pedersen, and P. Mogensen, “Signal quality outage analysis for ultra-reliable communications in cellular networks,” in 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6, Dec 2015.
  9. J. J. Nielsen, R. Liu, and P. Popovski, “Ultra-reliable low latency communication using interface diversity,” IEEE Transactions on Communications, vol. 66, pp. 1322–1334, March 2018.
  10. S. R. Khosravirad, H. Viswanathan, and W. Yu, “Exploiting diversity for ultra-reliable and low-latency wireless control,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 316–331, 2020.
  11. V. N. Swamy, P. Rigge, G. Ranade, B. Nikolić, and A. Sahai, “Wireless channel dynamics and robustness for ultra-reliable low-latency communications,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 705–720, 2019.
  12. S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Predictive ultra-reliable communication: A survival analysis perspective,” IEEE Communications Letters, vol. 25, no. 4, pp. 1221–1225, 2020.
  13. N. Mehrnia and S. Coleri, “Multivariate extreme value theory based channel modeling for ultra-reliable communications,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  14. V. N. Swamy, P. Rigge, G. Ranade, B. Nikolic, and A. Sahai, “Predicting wireless channels for ultra-reliable low-latency communications,” in 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2609–2613, IEEE, 2018.
  15. F. Pase, M. Giordani, and M. Zorzi, “On the convergence time of federated learning over wireless networks under imperfect csi,” arXiv preprint arXiv:2104.00331, 2021.
  16. N. Mehrnia and S. Coleri, “Extreme value theory based rate selection for ultra-reliable communications,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2022.
  17. N. Mehrnia and S. Coleri, “Wireless channel modeling based on extreme value theory for ultra-reliable communications,” IEEE Transactions on Wireless Communications, pp. 1–1, 2021.
  18. N. Mehrnia and S. Coleri, “Non-stationary wireless channel modeling approach based on extreme value theory for ultra-reliable communications,” IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8264–8268, 2021.
  19. W. Zhang, M. Derakhshani, and S. Lambotharan, “Non-parametric statistical learning for urllc transmission rate control,” in ICC 2021-IEEE International Conference on Communications, pp. 1–6, IEEE, 2021.
  20. N. Mehrnia and S. Coleri, “Incorporation of confidence interval into rate selection based on the extreme value theory for ultra-reliable communications,” in European Conference on Networks and Communications (EuCNC) and the 6G Summit, pp. 1–6, IEEE, 2022.
  21. Springer, 2001.
  22. G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proceedings of the IEEE, vol. 104, no. 9, pp. 1711–1726, 2016.
  23. J. Shi, D. Anzai, and J. Wang, “Channel modeling and performance analysis of diversity reception for implant uwb wireless link,” IEICE transactions on communications, vol. 95, no. 10, pp. 3197–3205, 2012.
  24. D. Cooley, R. A. Davis, and P. Naveau, “The pairwise beta distribution: A flexible parametric multivariate model for extremes,” Journal of Multivariate Analysis, vol. 101, no. 9, pp. 2103–2117, 2010.
  25. SIAM, 2007.
  26. M.-T. Puth, M. Neuhäuser, and G. D. Ruxton, “On the variety of methods for calculating confidence intervals by bootstrapping,” Journal of Animal Ecology, vol. 84, no. 4, pp. 892–897, 2015.
  27. B. Grün and T. Miljkovic, “The automated bias-corrected and accelerated bootstrap confidence intervals for risk measures,” North American Actuarial Journal, pp. 1–20, 2022.
  28. M. H. Quenouille, “Approximate tests of correlation in time-series 3,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 483–484, Cambridge University Press, 1949.
  29. R. J. Tibshirani and B. Efron, “An introduction to the bootstrap,” Monographs on statistics and applied probability, vol. 57, pp. 1–436, 1993.
  30. C. U. Bas and S. Coleri Ergen, “Ultra-wideband channel model for intra-vehicular wireless sensor networks beneath the chassis: From statistical model to simulations,” IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp. 14–25, 2012.
  31. U. Demir, C. U. Bas, and S. Coleri Ergen, “Engine compartment UWB channel model for intra-vehicular wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2497–2505, 2013.
  32. P. Bortot, S. Coles, and J. Tawn, “The multivariate gaussian tail model: An application to oceanographic data,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 49, no. 1, pp. 31–049, 2000.
  33. U. Demir, C. U. Bas, and S. C. Ergen, “Engine compartment uwb channel model for intravehicular wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2497–2505, 2013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.