Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the $p$-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity (2401.05755v1)

Published 11 Jan 2024 in math.AP

Abstract: In this article, we deal with the following $p$-fractional Schr\"{o}dinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: $$ M\left([u]{s,A}{p}\right)(-\Delta){p, A}{s} u+V(x)|u|{p-2} u=\lambda\left(\int_{\mathbb{R}{N}} \frac{|u|{p_{\mu, s}{*}}}{|x-y|{\mu}} \mathrm{d}y\right)|u|{p_{\mu, s}{*}-2} u+k|u|{q-2}u,\ x \in \mathbb{R}{N},$$ where $0<s<1<p$, $ps < N$, $p<q<2p{*}_{s,\mu}$, $0<\mu<N$, $\lambda$ and $k$ are some positive parameters, $p{*}_{s,\mu}=\frac{pN-p\frac{\mu}{2}}{N-ps}$ is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions $V$, $M$ satisfy the suitable conditions. By proving the compactness results with the help of the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.

Citations (9)

Summary

We haven't generated a summary for this paper yet.