Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On degenerate fractional Schrödinger-Kirchhoff-Poisson equations with upper critical nonlinearity and electromagnetic fields (2306.08319v1)

Published 14 Jun 2023 in math.AP

Abstract: We investigate the degenerate fractional Schr\"{o}dinger-Kirchhoff-Poisson equation in $\mathbb{R}3$ with critical nonlinearity and electromagnetic fields $\varepsilon{2s} M([u]{s,A}2)(-\Delta){A}su + V(x)u + \phi u = k(x)|u|{r-2}u + \left(\mathcal{I}\mu*|u|{2_s\sharp}\right)|u|{2_s\sharp-2}u$ and $(-\Delta)t\phi = u2,$ where $\varepsilon > 0$ is a parameter, $3/4<s<1$, $0 < t < 1$, $V$ is an electric potential satisfying some suitable assumptions, $0 < k\ast \leq k(x) \leq k\ast$, $\mathcal{I}_\mu(x) = |x|{3-\mu}$ with $0<\mu<3$, $2_s\sharp =\frac{3+\mu}{3-2s},$ and $2 < r < 2_s\sharp$. With the help of the concentration compactness principle and variational methods, together with some fine analytical tools, we establish the existence and multiplicity of solutions for the above problem when $\varepsilon \rightarrow 0$ in the degenerate cases, i.e. when the Kirchhoff term $M$ vanishes at zero.

Summary

We haven't generated a summary for this paper yet.