Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

End-to-End Learning for SLP-Based ISAC Systems (2401.05663v1)

Published 11 Jan 2024 in eess.SP

Abstract: Integrated sensing and communication (ISAC) is an encouraging wireless technology which can simultaneously perform both radar and communication functionalities by sharing the same transmit waveform, spectral resource, and hardware platform. Recently emerged symbol-level precoding (SLP) technique exhibits advancement in ISAC systems by leveraging the waveform design degrees of freedom (DoFs) in both temporal and spatial domains. However, traditional SLP-based ISAC systems are designed in a modular paradigm, which potentially limits the overall performance of communication and radar sensing. The high complexity of existing SLP design algorithms is another issue that hurdles the practical deployment. To break through the bottleneck of these approaches, in this paper we propose an end-to-end approach to jointly design the SLP-based dual-functional transmitter and receivers of communication and radar sensing. In particular, we aim to utilize deep learning-based methods to minimize the symbol error rate (SER) of communication users, maximize the detection probability, and minimize the root mean square error (RMSE) of the target angle estimation. Multi-layer perceptron (MLP) networks and a long short term memory (LSTM) network are respectively applied to the transmitter, communication users and radar receiver. Simulation results verify the feasibility of the proposed deep-learning-based end-to-end optimization for ISAC systems and reveal the effectiveness of the proposed neural networks for the end-to-end design.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube