Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exceptional-point Sensors Offer No Fundamental Signal-to-Noise Ratio Enhancement (2401.04825v2)

Published 9 Jan 2024 in quant-ph, physics.atom-ph, and physics.optics

Abstract: Exceptional-point (EP) sensors are characterized by a square-root resonant frequency bifurcation in response to an external perturbation. This has lead numerous suggestions for using these systems for sensing applications. However, there is an open debate as to whether or not this sensitivity advantage is negated by additional noise in the system. We show that an EP sensor's imprecision in measuring a generalized force is independent of its operating point's proximity to the EP. That is because frequency noises of fundamental origin in the sensor -- due to quantum and thermal fluctuations -- increase in a manner that exactly cancels the benefit of increased resonant frequency sensitivity near the EP. So the benefit of EP sensors is limited to the regime where sensing is limited by technical noises. Finally, we outline an EP sensor with phase-sensitive gain that does have an advantage even if limited by fundamental noises.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. M.-A. Miri and A. Alù, Science 363, eaar7709 (2019).
  2. M. I. N. Rosa, M. Mazzotti, and M. Ruzzene, Journal of the Mechanics and Physics of Solids 149, 104325 (2021).
  3. W. Langbein, Physical Review A 98, 023805 (2018).
  4. H.-K. Lau and A. A. Clerk, Nature Communications 9, 4320 (2018).
  5. C. Chen, L. Jin, and R.-B. Liu, New Journal of Physics 21, 083002 (2019).
  6. R. Duggan, S. A. Mann, and A. Alù, ACS Photonics 9, 1554 (2022).
  7. W. Ding, X. Wang, and S. Chen, Physical Review Letters 131, 160801 (2023).
  8. W. H. Louisell, A. Yariv, and A. E. Siegman, Physical Review 124, 1646 (1961).
  9. J. P. Gordon, W. H. Louisell, and L. R. Walker, Physical Review 129 (1963).
  10. R. F. Streater, Journal of Physics A 15, 1477 (1982).
  11. M. J. Collett and C. W. Gardiner, Physical Review A 30, 1386 (1984).
  12. C. W. Gardiner and M. J. Collett, Physical Review A 31, 3761 (1985).
  13. H. A. Loughlin and V. Sudhir, Nature Communications 14, 7083 (2023).
  14. S. L. Braunstein, C. M. Caves, and G. J. Milburn, Annals of Physics 247, 135 (1996).
  15. S. L. Danilishin and F. Y. Khalili, Living Reviews in Relativity 15, 5 (2012).
  16. H. A. Haus and C. H. Townes, Proceedings of the Institute of Radio Engineers 50, 1544 (1962).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com