Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Phases of theories with $\mathbb{Z}_N$ 1-form symmetry and the roles of center vortices and magnetic monopoles (2401.04800v2)

Published 9 Jan 2024 in hep-th, cond-mat.str-el, and hep-lat

Abstract: We analyze the phases of theories which only have a microscopic $\mathbb{Z}_N$ 1-form symmetry, starting with a topological BF theory and deforming it in accordance with microscopic symmetry. These theories have a well-defined notion of confinement. Prototypical examples are pure $SU(N)$ gauge theories and $\mathbb{Z}_N$ lattice gauge theories. Our analysis shows that the only generic phases are in $d=2$, only the confined phase; in $d=3$, both the confined phase and the topological BF phase; and in $d=4$, the confined phase, the topological BF phase, and a phase with a massless photon. We construct a $\mathbb{Z}_N$ lattice gauge theory with a deformation which, surprisingly, produces up to $(N-1)$ photons. We give an interpretation of these findings in terms of two competing pictures of confinement -- proliferation of monopoles and proliferation of center vortices -- and conclude that the proliferation of center vortices is a necessary but insufficient condition for confinement, while that of monopoles is both necessary and sufficient.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. G. ’t Hooft, Nucl. Phys. B 138, 1 (1978).
  2. A. M. Polyakov, Phys. Lett. B 72, 477 (1978).
  3. S. Mandelstam, Phys. Rept. 23, 245 (1976).
  4. A. M. Polyakov, Phys. Lett. B 59, 82 (1975).
  5. G. ’t Hooft, Nucl. Phys. B 153, 141 (1979).
  6. G. ’t Hooft, Nucl. Phys. B 190, 455 (1981).
  7. A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
  8. N. Seiberg and E. Witten, Nucl. Phys. B 426, 19 (1994), [Erratum: Nucl.Phys.B 430, 485–486 (1994)], arXiv:hep-th/9407087 .
  9. M. Unsal and L. G. Yaffe, Phys. Rev. D 78, 065035 (2008), arXiv:0803.0344 [hep-th] .
  10. M. Unsal, Phys. Rev. D 80, 065001 (2009), arXiv:0709.3269 [hep-th] .
  11. J. M. Cornwall, Nucl. Phys. B 157, 392 (1979).
  12. H. B. Nielsen and P. Olesen, Nucl. Phys. B 160, 380 (1979).
  13. Y. Tanizaki and M. Ünsal, PTEP 2022, 04A108 (2022), arXiv:2201.06166 [hep-th] .
  14. C. Alexandrou, M. D’Elia, and P. de Forcrand, Nucl. Phys. B Proc. Suppl. 83, 437 (2000a), arXiv:hep-lat/9907028 .
  15. C. Alexandrou, P. de Forcrand, and M. D’Elia, Nucl. Phys. A 663, 1031 (2000b), arXiv:hep-lat/9909005 .
  16. P. de Forcrand and M. D’Elia, Phys. Rev. Lett. 82, 4582 (1999), arXiv:hep-lat/9901020 .
  17. P. de Forcrand and M. Pepe, Nucl. Phys. B 598, 557 (2001), arXiv:hep-lat/0008016 .
  18. N. Sale, B. Lucini, and J. Giansiracusa, Phys. Rev. D 107, 034501 (2023), arXiv:2207.13392 [hep-lat] .
  19. N. Seiberg (2019), talk at Strings https://www.ias.edu/sites/default/files/sns/files/QFT.pdf.
  20. T. Yoneya, Nucl. Phys. B 144, 195 (1978).
  21. J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003), arXiv:hep-lat/0301023 .
  22. S. Deldar and S. M. Hosseini Nejad, AIP Conf. Proc. 1701, 100004 (2016), arXiv:1503.04459 [hep-ph] .
  23. A. Cherman, T. Jacobson, and M. Neuzil, SciPost Phys. 12, 116 (2022), arXiv:2111.00078 [hep-th] .
  24. A. Cherman and T. Jacobson, arXiv:2304.13751 [hep-th] (2023).
  25. S. Elitzur, R. B. Pearson, and J. Shigemitsu, Phys. Rev. D 19, 3698 (1979).
  26. D. Horn, M. Weinstein, and S. Yankielowicz, Phys. Rev. D 19, 3715 (1979).
  27. J. Frohlich and T. Spencer, Commun. Math. Phys. 83, 411 (1982).
  28. M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D 20, 1915 (1979).
  29. T. Sulejmanpasic and C. Gattringer, Nucl. Phys. B 943, 114616 (2019), arXiv:1901.02637 [hep-lat] .
  30. T. A. DeGrand and D. Toussaint, Phys. Rev. D 22, 2478 (1980).
  31. M. N. Chernodub and M. I. Polikarpov, in NATO Advanced Study Institute on Confinement, Duality and Nonperturbative Aspects of QCD (1997) pp. 387–414, arXiv:hep-th/9710205 .
  32. G. Bhanot and M. Creutz, Phys. Rev. D 21, 2892 (1980).
  33. D. J. Gross and I. R. Klebanov, Nucl. Phys. B 344, 475 (1990).
  34. J. L. Cardy and E. Rabinovici, Phys. Rev. D 15, 342 (1977).
  35. J. L. Cardy and E. Rabinovici, Nucl. Phys. B 205, 1 (1982).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube