Phases of theories with $\mathbb{Z}_N$ 1-form symmetry and the roles of center vortices and magnetic monopoles (2401.04800v2)
Abstract: We analyze the phases of theories which only have a microscopic $\mathbb{Z}_N$ 1-form symmetry, starting with a topological BF theory and deforming it in accordance with microscopic symmetry. These theories have a well-defined notion of confinement. Prototypical examples are pure $SU(N)$ gauge theories and $\mathbb{Z}_N$ lattice gauge theories. Our analysis shows that the only generic phases are in $d=2$, only the confined phase; in $d=3$, both the confined phase and the topological BF phase; and in $d=4$, the confined phase, the topological BF phase, and a phase with a massless photon. We construct a $\mathbb{Z}_N$ lattice gauge theory with a deformation which, surprisingly, produces up to $(N-1)$ photons. We give an interpretation of these findings in terms of two competing pictures of confinement -- proliferation of monopoles and proliferation of center vortices -- and conclude that the proliferation of center vortices is a necessary but insufficient condition for confinement, while that of monopoles is both necessary and sufficient.
- G. ’t Hooft, Nucl. Phys. B 138, 1 (1978).
- A. M. Polyakov, Phys. Lett. B 72, 477 (1978).
- S. Mandelstam, Phys. Rept. 23, 245 (1976).
- A. M. Polyakov, Phys. Lett. B 59, 82 (1975).
- G. ’t Hooft, Nucl. Phys. B 153, 141 (1979).
- G. ’t Hooft, Nucl. Phys. B 190, 455 (1981).
- A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
- N. Seiberg and E. Witten, Nucl. Phys. B 426, 19 (1994), [Erratum: Nucl.Phys.B 430, 485–486 (1994)], arXiv:hep-th/9407087 .
- M. Unsal and L. G. Yaffe, Phys. Rev. D 78, 065035 (2008), arXiv:0803.0344 [hep-th] .
- M. Unsal, Phys. Rev. D 80, 065001 (2009), arXiv:0709.3269 [hep-th] .
- J. M. Cornwall, Nucl. Phys. B 157, 392 (1979).
- H. B. Nielsen and P. Olesen, Nucl. Phys. B 160, 380 (1979).
- Y. Tanizaki and M. Ünsal, PTEP 2022, 04A108 (2022), arXiv:2201.06166 [hep-th] .
- C. Alexandrou, M. D’Elia, and P. de Forcrand, Nucl. Phys. B Proc. Suppl. 83, 437 (2000a), arXiv:hep-lat/9907028 .
- C. Alexandrou, P. de Forcrand, and M. D’Elia, Nucl. Phys. A 663, 1031 (2000b), arXiv:hep-lat/9909005 .
- P. de Forcrand and M. D’Elia, Phys. Rev. Lett. 82, 4582 (1999), arXiv:hep-lat/9901020 .
- P. de Forcrand and M. Pepe, Nucl. Phys. B 598, 557 (2001), arXiv:hep-lat/0008016 .
- N. Sale, B. Lucini, and J. Giansiracusa, Phys. Rev. D 107, 034501 (2023), arXiv:2207.13392 [hep-lat] .
- N. Seiberg (2019), talk at Strings https://www.ias.edu/sites/default/files/sns/files/QFT.pdf.
- T. Yoneya, Nucl. Phys. B 144, 195 (1978).
- J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003), arXiv:hep-lat/0301023 .
- S. Deldar and S. M. Hosseini Nejad, AIP Conf. Proc. 1701, 100004 (2016), arXiv:1503.04459 [hep-ph] .
- A. Cherman, T. Jacobson, and M. Neuzil, SciPost Phys. 12, 116 (2022), arXiv:2111.00078 [hep-th] .
- A. Cherman and T. Jacobson, arXiv:2304.13751 [hep-th] (2023).
- S. Elitzur, R. B. Pearson, and J. Shigemitsu, Phys. Rev. D 19, 3698 (1979).
- D. Horn, M. Weinstein, and S. Yankielowicz, Phys. Rev. D 19, 3715 (1979).
- J. Frohlich and T. Spencer, Commun. Math. Phys. 83, 411 (1982).
- M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D 20, 1915 (1979).
- T. Sulejmanpasic and C. Gattringer, Nucl. Phys. B 943, 114616 (2019), arXiv:1901.02637 [hep-lat] .
- T. A. DeGrand and D. Toussaint, Phys. Rev. D 22, 2478 (1980).
- M. N. Chernodub and M. I. Polikarpov, in NATO Advanced Study Institute on Confinement, Duality and Nonperturbative Aspects of QCD (1997) pp. 387–414, arXiv:hep-th/9710205 .
- G. Bhanot and M. Creutz, Phys. Rev. D 21, 2892 (1980).
- D. J. Gross and I. R. Klebanov, Nucl. Phys. B 344, 475 (1990).
- J. L. Cardy and E. Rabinovici, Phys. Rev. D 15, 342 (1977).
- J. L. Cardy and E. Rabinovici, Nucl. Phys. B 205, 1 (1982).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.