2000 character limit reached
Convergence of a generalized Riemann problem scheme for the Burgers equation (2401.03714v1)
Published 8 Jan 2024 in math.NA and cs.NA
Abstract: In this paper we study the convergence of a second order finite volume approximation of the scalar conservation law. This scheme is based on the generalized Riemann problem (GRP) solver. We firstly investigate the stability of the GRP scheme and find that it might be entropy unstable when the shock wave is generated. By adding an artificial viscosity we propose a new stabilized GRP scheme. Under the assumption that numerical solutions are uniformly bounded, we prove consistency and convergence of this new GRP method.
- J. M. Ball. A version of the fundamental theorem for young measures. In PDEs and Continuum Models of Phase Transitions, pages 207–215. Springer-Verlag Berlin Heidelberg, 1989.
- The convergence of the GRP scheme. Discrete Contin. Dyn. Syst., 23:1–27, 2009.
- M. Ben-Artzi and J. Li. Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem. Numer. Math., 106(3):369–425, 2007.
- M. Ben-Artzi and J. Li. Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comput., 90(327):141–169, 2021.
- M. Ben-Artzi, J. Li and G. Warnecke. A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys., 218(1):19–43, 2006.
- Well-Posedness of the Cauchy Problem for n×n𝑛𝑛n\times nitalic_n × italic_n Systems of Conservation Laws. Memoirs of the American Mathematical Society, 2000.
- A. Bressan and M. Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete Contin. Dyn. Syst., 6(3):673–682, 2000.
- C. Cancès, H. Mathis and N. Seguin. Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM J. Numer. Anal., 54(2):1263–1287, 2016.
- E. Chiodaroli, C. De Lellis and O. Kreml. Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math., 68(7):1157–1190, 2015.
- Non–uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Trans. Amer. Math. Soc., 374(4):2269–2295, 2021.
- C. De Lellis and L. Székelyhidi Jr. On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal., 195(1):225–260, 2010.
- R.J. DiPerna. Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal., 88(3):223–270, 1985.
- J. Li and Z.F. Du. A two-stage fourth order time-accurate discretization for Lax–Wendroff type flow solvers I. Hyperbolic conservation laws. SIAM J. Sci. Comput., 38(5):A3046–A3069, 2016.
- On oscillatory solutions to the complete Euler system. J. Differ. Equ., 269(2):1521–1543, 2020.
- E. Feireisl, M. Lukáčová-Medvid’ová and H. Mizerová. Convergence of finite volume schemes for the Euler equations via dissipative measure–valued solutions. Found. Comput. Math., 20(4):923–966, 2020.
- E. Feireisl, M. Lukáčová-Medvid’ová and H. Mizerová. A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math., 144(1):89-132, 2020.
- Numerical Analysis of Compressible Flows. Volume 20 of MS& A series, Springer-Verlag, 2021.
- Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math., 17(3): 763–827, 2017.
- ENO reconstruction and ENO interpolation are stable. Found. Comput. Math., 13:139–159, 2013.
- On the computation of measure-valued solutions. Acta Numer., 25:567–679, 2016.
- V. Jovanović and Ch. Rohde. Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal., 43(6):2423–2449, 2006.
- D. Kröner, S. Noelle and M. Rokyta. Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numer. Math., 71:527-0560, 1995.
- D. Kröner and M. Rokyta. Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal., 31(2):324–343, 1994.
- S. Kružkov. First order quasilinear equations in several independent variables. USSR Math. Sbornik, 10(2):217–243, 1970.
- Convergence of first-order finite volume method based on exact Riemann solver for the complete compressible Euler equations. Numer. Methods Partial Differ. Eq., 39(5):3777–3810, 2023.
- M. Lukáčová-Medvid’ová, B. She and Y. Yuan. Error estimates of the Godunov method for the multidimensional compressible Euler system. J. Sci. Comput., 91(3):Paper No. 71, 2022.
- Relaxation Runge–Kutta methods: Fully discrete explicit entropy-stable schemes for the compressible Euler and Navier–Stokes Equations. SIAM J. Sci. Comput., 42(2):A612–A638, 2020.