Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Godunov type scheme and error estimates for multidimensional scalar conservation laws with Panov-type discontinuous flux (2103.05602v1)

Published 9 Mar 2021 in math.NA, cs.NA, and math.AP

Abstract: This article concerns a scalar multidimensional conservation law where the flux is of Panov type and may contain spatial discontinuities. We define a notion of entropy solution and prove that entropy solutions are unique. We propose a Godunov-type finite volume scheme and prove that the Godunov approximations converge to an entropy solution, thus establishing existence of entropy solutions. We also show that our numerical scheme converges at an optimal rate of $\mathcal{O}(\sqrt{\D t}).$ To the best of our knowledge, convergence of the Godunov type methods in multi-dimension and error estimates of the numerical scheme in one as well as in several dimensions are the first of it's kind for conservation laws with discontinuous flux. We present numerical examples that illustrate the theory.

Summary

We haven't generated a summary for this paper yet.