Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Hawking radiation inside a rotating black hole (2401.03098v2)

Published 6 Jan 2024 in gr-qc

Abstract: In semiclassical gravity, the vacuum expectation value ${\langle\hat{N}\rangle}$ of the particle number operator for a quantum field gives rise to the perception of thermal radiation in the vicinity of a black hole. This Hawking effect has been examined only for observers asymptotically far from a Kerr black hole; here we generalize the analysis to various classes of freely falling observers both outside and inside the Kerr event horizon. Of note, we find that the effective temperature of the ${\langle\hat{N}\rangle}$ distribution remains regular for observers at the event horizon but becomes negative and divergent for observers reaching the inner Cauchy horizon. Furthermore, the perception of Hawking radiation varies greatly for different classes of observers, though the spectrum is generally a graybody that decreases in intensity with black hole spin and increases in temperature when looking toward the edges of the black hole shadow.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. W. Hawking, Black hole explosions?, Nature 248, 30 (1974).
  2. E. Greenwood and D. Stojkovic, Hawking radiation as seen by an infalling observer, Journal of High Energy Physics 2009, 058 (2009).
  3. L. C. Barbado, C. Barceló, and L. J. Garay, Hawking radiation as perceived by different observers, Classical and Quantum Gravity 28, 125021 (2011).
  4. A. Saini and D. Stojkovic, Hawking-like radiation and the density matrix for an infalling observer during gravitational collapse, Phys. Rev. D 94, 064028 (2016).
  5. A. J. S. Hamilton, Hawking radiation inside a Schwarzschild black hole, General Relativity and Gravitation 50, 50 (2018).
  6. T. McMaken and A. J. S. Hamilton, Hawking radiation inside a charged black hole, Phys. Rev. D 107, 085010 (2023).
  7. R. Penrose, Structure of space-time, in Battelle Rencontres: 1967 lectures in mathematics and physics, edited by C. de Witt-Morette and J. A. Wheeler (W. A. Benjamin, New York, 1968) pp. 121–235.
  8. M. Simpson and R. Penrose, Internal instability in a Reissner-Nordström black hole, Int. J. Theor. Phys. 7, 183 (1973).
  9. B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174, 1559 (1968).
  10. J. A. Marck and B. Carter, Solution to the equations of parallel transport in Kerr geometry; tidal tensor, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 385, 431 (1983).
  11. T. McMaken and A. J. S. Hamilton, Geometry near the inner horizon of a rotating, accreting black hole, Phys. Rev. D 103, 084014 (2021).
  12. S. A. Teukolsky, Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett. 29, 1114 (1972).
  13. R. P. Geroch, A. Held, and R. Penrose, A space-time calculus based on pairs of null directions, J. Math. Phys. 14, 874 (1973).
  14. E. Berti, V. Cardoso, and M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions, Phys. Rev. D 73, 024013 (2006).
  15. A. Krasiński and K. Bolejko, Avoidance of singularities in spherically symmetric charged dust, Phys. Rev. D 73, 124033 (2006).
  16. W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14, 870 (1976).
  17. Y. Mino, Perturbative approach to an orbital evolution around a supermassive black hole, Phys. Rev. D 67, 084027 (2003).
  18. H. C. D. Lima Junior, L. C. B. Crispino, and A. Higuchi, On-axis tidal forces in Kerr spacetime, The European Physical Journal Plus 135, 334 (2020).
  19. T. McMaken, Semiclassical instability of inner-extremal regular black holes, Phys. Rev. D 107, 125023 (2023).
  20. O. Semerák, Stationary frames in the Kerr field, General Relativity and Gravitation 25, 1041 (1993).
  21. Black Hole Perturbation Toolkit, (bhptoolkit.org) (Accessed May 2022).
  22. A. A. Starobinsky, Amplification of waves reflected from a rotating ”black hole”., Sov. Phys. JETP 37, 28 (1973).
  23. S. W. Hawking, Particle creation by black holes, Communications in Mathematical Physics 43, 199 (1975).
  24. D. N. Page, Particle emission rates from a black hole. ii. massless particles from a rotating hole, Phys. Rev. D 14, 3260 (1976).
  25. S. A. Fulling, M. Sweeny, and R. M. Wald, Singularity structure of the two-point function in quantum field theory in curved spacetime, Communications in Mathematical Physics 63, 257 (1978).
  26. A. J. Hamilton and P. P. Avelino, The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes, Physics Reports 495, 1 (2010).
  27. M. Dafermos, The interior of charged black holes and the problem of uniqueness in general relativity, Communications on Pure and Applied Mathematics 58, 445 (2005).
  28. C. Moller, The energy-momentum complex in general relativity and related problems, Colloq. Int. CNRS 91, 15 (1962).
  29. L. Rosenfeld, On quantization of fields, Nuclear Physics 40, 353 (1963).
  30. S. Mano, H. Suzuki, and E. Takasugi, Analytic Solutions of the Teukolsky Equation and Their Low Frequency Expansions, Progress of Theoretical Physics 95, 1079 (1996).
  31. S. Mano and E. Takasugi, Analytic Solutions of the Teukolsky Equation and Their Properties, Progress of Theoretical Physics 97, 213 (1997).
  32. M. Sasaki and H. Tagoshi, Analytic black hole perturbation approach to gravitational radiation, Living Reviews in Relativity 6, 6 (2003).
  33. N. Svartholm, Die Lösung der Fuchsschen Differentialgleichung zweiter Ordnung durch hypergeometrische Polynome, Mathematische Annalen 116, 413 (1939).
  34. A. Erdélyi, The Fuchsian equation of second order with four singularities, Duke Mathematical Journal 9, 48 (1942).
  35. A. Erdélyi, Certain expansions of solutions of the Heun equation, The Quarterly Journal of Mathematics os-15, 62 (1944).
  36. A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation (Imperial College Press, London, 2005).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com