Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Phase transitions and scale invariance in topological Anderson insulators (2401.03028v2)

Published 5 Jan 2024 in cond-mat.dis-nn, cond-mat.mes-hall, and cond-mat.mtrl-sci

Abstract: We investigate disordered-driven transitions between trivial and topological insulator (TI) phases in two-dimensional (2D) systems. Our study primarily focuses on the BHZ model with Anderson disorder, while other standard 2DTI models exhibit equivalent features. The analysis is based on the local Chern marker (LCM), a local quantity that allows for the characterization of topological transitions in finite and disordered systems. Our simulations indicate that disorder-driven trivial to topological insulator transitions are nicely characterized by $\mathcal{C}_0$, the disorder averaged LCM near the central cell of the system. We show that $\mathcal{C}_0$ is characterized by a single-parameter scaling, namely, $\mathcal{C}_0(M, W, L) \equiv \mathcal{C}_0(z)$ with $z = [W\mu-W_c\mu(M)]L$, where $M$ is the Dirac mass, $W$ is the disorder strength and $L$ is the system size, while $W_c(M) \propto \sqrt{M}$ and $\mu \approx 2$ stand for the critical disorder strength and critical exponent, respectively. Our numerical results are in agreement with a theoretical prediction based on a first-order Born approximation (1BA) analysis. These observations lead us to speculate that the universal scaling function we have found is rather general for amorphous and disorder-driven topological phase transitions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  2. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  3. C. L. Kane and E. J. Mele, Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005a).
  4. B. A. Bernevig and S.-C. Zhang, Quantum Spin Hall Effect, Phys. Rev. Lett. 96, 106802 (2006).
  5. M. He, H. Sun, and Q. L. He, Topological insulator: Spintronics and quantum computations, Front. Phys. 14, 43401 (2019).
  6. K. Mazumder and P. M. Shirage, A brief review of Bi22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTSe33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT based topological insulator: From fundamentals to applications, J. Alloys Compd. 888, 161492 (2021).
  7. O. Breunig and Y. Ando, Opportunities in topological insulator devices, Nat. Rev. Phys. 4, 184 (2021).
  8. R. M. Kaufmann, D. Li, and B. Wehefritz-Kaufmann, Notes on topological insulators, Rev. Math. Phys. 28, 1630003 (2016).
  9. M. Tomé and H. D. Rosales, Topological phase transition driven by magnetic field and topological Hall effect in an antiferromagnetic skyrmion lattice, Phys. Rev. B 103, L020403 (2021).
  10. G. Antonius and S. G. Louie, Temperature-induced topological phase transitions: Promoted versus suppressed nontrivial topology, Phys. Rev. Lett. 117, 246401 (2016).
  11. W. Chen, Scaling theory of topological phase transitions, J. Phys. Condens. Matter 28, 055601 (2016).
  12. P. Molignini, W. Chen, and R. Chitra, Universal quantum criticality in static and Floquet-Majorana chains, Phys. Rev. B 98, 125129 (2018).
  13. W. Chen and A. P. Schnyder, Universality classes of topological phase transitions with higher-order band crossing, New J. Phys. 21, 073003 (2019).
  14. A. Agarwala and V. B. Shenoy, Topological insulators in amorphous systems, Phys. Rev. Lett. 118, 236402 (2017).
  15. R. Resta, The insulating state of matter: a geometrical theory, Eur. Phys. J. B 79, 121 (2011).
  16. P. d'Ornellas, R. Barnett, and D. K. K. Lee, Quantized bulk conductivity as a local Chern marker, Phys. Rev. B 106, 155124 (2022).
  17. N. Baù and A. Marrazzo, Local chern marker for periodic systems (2023), arXiv:2310.15783 [cond-mat.mes-hall] .
  18. J. Sykes and R. Barnett, Local topological markers in odd dimensions, Phys. Rev. B 103, 155134 (2021).
  19. R. Shindou and S. Murakami, Effects of disorder in three-dimensional Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT quantum spin Hall systems, Phys. Rev. B 79, 045321 (2009).
  20. F. Zangeneh-Nejad and R. Fleury, Disorder-induced signal filtering with topological metamaterials, Adv. Mater. 32, 2001034 (2020).
  21. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science 314, 1757 (2006).
  22. F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ”parity anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
  23. C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005b).
  24. See Supplemental Material at [URL will be inserted by publisher] for additional information on the numerical methods and on the analysis of the topological disorder-driven transitions in the Haldane and Kane-Mele models, that are similar to the ones discussed in the main text.
  25. A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).
  26. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
  27. R. Bianco and R. Resta, Mapping topological order in coordinate space, Phys. Rev. B 84, 241106(R) (2011).
  28. E. Blount, Formalisms of band theory (Academic Press, 1962) pp. 305–373.
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.