Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Quantum cosmology in teleparallel gravity with a boundary term (2401.02850v2)

Published 5 Jan 2024 in gr-qc

Abstract: We quantize a homogeneous and isotropic universe for two models of modified teleparallel gravity, wherein an arbitrary function of the boundary term, namely $B$, is present in the action and in the other model a scalar field that is non-minimally coupled to both the torsion and boundary term. In this regard, we study exact solutions of both the classical and quantum frameworks by utilizing the corresponding Wheeler-DeWitt (WDW) equations of the models. To correspond to the comprehensive classical and quantum levels, in the second model, we propose an appropriate initial condition for the wave packets and observe that they closely adhere to the classical trajectories and reach their peak. We quantify this correspondence using the de-Broglie Bohm interpretation of quantum mechanics. According to this proposal, the classical and Bohmian trajectories coincide when the quantum potential vanishes along the Bohmian paths. Furthermore, we apply the de-parameterization technique to our model in the realm of the problem of time in quantum cosmological models based on the WDW equation, utilizing the global internal time denoted as $\chi$, which represents a scalar field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. S. Nojiri and S. D. Odintsov, Phys. Rev. D 68 123512 (2003).
  2. S. Nojiri and S. D. Odintsov, Phys. Rev. D 74 086005 (2006).
  3. K. Atazadeh and H. R. Sepangi, Int. J. Mod. Phys. D 16 (2007) 687.
  4. S. Capozziello, Int. J. Mod. Phys. D 11 (2002) 483.
  5. V. Faraoni, Phys. Rev. D 74 (2006) 104017.
  6. G. J. Olmo, Phys. Rev. Lett. 95 (2005) 261102.
  7. G. J. Olmo, Phys. Rev. D 75 (2007) 023511.
  8. V. Faraoni, Phys. Rev. D 75 (2007) 067302.
  9. E. V. Linder, Phys. Rev. D 81(2010) 127301.
  10. R. J. Yang, Europhys. Lett. 93 (2011) 60001.
  11. K. Bamba and C. Q. Geng, JCAP 1111 (2011) 008.
  12. H. Wei, Phys. Lett. B 712 (2012) 430.
  13. Y. P. Wu and C. Q. Geng, Phys. Rev. D 86 (2012) 104058.
  14. K. Karami and A. Abdolmaleki, JCAP 1204 (2012) 007.
  15. N. Tamanini and C. G. Boehmer, Phys. Rev. D 86 (2012) 044009.
  16. D. Liu and M. J. Reboucas, Phys. Rev. D 86 (2012) 083515.
  17. S. Chattopadhyay and A. Pasqua, Astrophys. Space Sci. 344 (2013) 269.
  18. G. Otalora, Phys. Rev. D 88 (2013) 063505.
  19. K. Atazadeh and F. Darabi, Eur. Phys. J. C 72 (2012) 2016.
  20. K. Atazadeh and M. Mousavi, Eur. Phys. J. C 73 (2013) 2272.
  21. K. Atazadeh and A. Eghbali, Phys. Scr. 90 (2015) 045001.
  22. L. Iorio and E. N. Saridakis, Mon. Not. Roy. Astron. Soc. 427 (2012) 1555.
  23. G. R. Bengochea and R. Ferraro, Phys. Rev. D 79 (2009) 124019.
  24. B. S. DeWitt, Phys. Rev. 160 (1967) 1113.
  25. C.W. Misner, Phys. Rev. 186 (1969) 1319.
  26. B. Vakili, Phys. Lett. B 669 (2008)206.
  27. B. Majumder, Int. J. Mod. Phys. D 22 (2013) 1342021.
  28. P. Pedram, Phys. Lett. B 671 (2009) 1.
  29. F. Darabi, Int. J. Theor. Phys. 48 (2009) 961.
  30. B. Vakili, Phys. Rev. D 83 (2011) 103505.
  31. E. Anderson, arXiv:1111.1472.
  32. N. Pinto-Neto and J. C. Fabris, Class. Quan. Grav. 30 (2013) 143001.
  33. E. Anderson, Annal. der Phys. 524 (2012) 757.
  34. F. Amemiya and T. Koike, Phys. Rev. D 80 (2009) 103507.
  35. P. Malkiewicz and W. Piechocki, Class. Quant. Grav. 27 (2010) 225018.
  36. A. Kreienbuehl, Phys. Rev. D 79 (2009) 123509.
  37. B. Vakili and H. R. Sepangi, Ann. Phys. 323 (2008) 548.
  38. W. F. Blyth and C. J. Isham, Phys. Rev. D 11 (1975) 768.
  39. P. A. M. Dirac, Can. J. Math. 2 (1950) 129.
  40. P. G. Bergmann, Rev. Mod. Phys. 33 (1961) 510.
  41. C. Rovelli, Phys. Rev. D 43,(1991) 442.
  42. B. Dittrich, Gen. Rel. Grav. 39 (2007) 1891.
  43. B. Dittrich, Class. Quant. Grav. 23 (2006) 6155.
  44. M. Bojowald and T. Halnon, Phys. Rev. D 98 (2018) 066001.
  45. M. Bojowald and A. Skirzewski, Rev. Math. Phys. 18 (2006) 713.
  46. M. Bojowald and A. Skirzewski, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 25.
  47. P. Pedram, JCAP 07 (2008) 006 .
  48. M. Zubair and S. Bahamonde, Eur. Phys. J. C 77 (2017) 472.
  49. D. Bohm, Phys. Rev. 85 (1952) 166.
  50. G. Gecim and Y. Kucukakca, Int. J. Geom. Meth. Mod. Phys. 15 (2018) 1850151.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com