Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips (2401.01810v3)
Abstract: As quantum circuits become more integrated and complex, additional error sources that were previously insignificant start to emerge. Consequently, the fidelity of quantum gates benchmarked under pristine conditions falls short of predicting their performance in realistic circuits. To overcome this problem, we must improve their robustness against pertinent error models besides isolated fidelity. Here we report the experimental realization of robust quantum gates in superconducting quantum circuits based on a geometric framework for diagnosing and correcting various gate errors. Using quantum process tomography and randomized benchmarking, we demonstrate robust single-qubit gates against quasi-static noise and spatially-correlated noise in a broad range of strengths, which are common sources of coherent errors in large-scale quantum circuit. We also apply our method to non-static noises and to realize robust two-qubit gates. Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
- L. H. Pedersen, N. M. Møller, and K. Mølmer, Physics Letters A 367, 47 (2007).
- Y. R. Sanders, J. J. Wallman, and B. C. Sanders, New J. Phys. 18, 012002 (2015).
- J. Johansson, P. Nation, and F. Nori, Computer Physics Communications 184, 1234 (2013).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- J. Zhang, R. Laflamme, and D. Suter, Phys. Rev. Lett. 109, 100503 (2012).
- G. Feng, G. Xu, and G. Long, Phys. Rev. Lett. 110, 190501 (2013).
- M. Saffman, Journal of Physics B: Atomic, Molecular and Optical Physics 49, 202001 (2016).
- S. Jandura, J. D. Thompson, and G. Pupillo, PRX Quantum 4, 020336 (2023).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.