Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Optimizing Convolutional Neural Network Architecture (2401.01361v1)

Published 17 Dec 2023 in cs.CV and cs.LG

Abstract: Convolutional Neural Networks (CNN) are widely used to face challenging tasks like speech recognition, natural language processing or computer vision. As CNN architectures get larger and more complex, their computational requirements increase, incurring significant energetic costs and challenging their deployment on resource-restricted devices. In this paper, we propose Optimizing Convolutional Neural Network Architecture (OCNNA), a novel CNN optimization and construction method based on pruning and knowledge distillation designed to establish the importance of convolutional layers. The proposal has been evaluated though a thorough empirical study including the best known datasets (CIFAR-10, CIFAR-100 and Imagenet) and CNN architectures (VGG-16, ResNet-50, DenseNet-40 and MobileNet), setting Accuracy Drop and Remaining Parameters Ratio as objective metrics to compare the performance of OCNNA against the other state-of-art approaches. Our method has been compared with more than 20 convolutional neural network simplification algorithms obtaining outstanding results. As a result, OCNNA is a competitive CNN constructing method which could ease the deployment of neural networks into IoT or resource-limited devices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.