Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity (2401.00967v3)
Abstract: We show that the seemingly different methods used to derive non-Lorentzian (Galilean and Carrollian) gravitational theories from Lorentzian ones are equivalent. Specifically, the pre-nonrelativistic and the pre-ultralocal parametrizations can be constructed from the gauging of the Galilei and Carroll algebras, respectively. Also, the pre-ultralocal approach of taking the Carrollian limit is equivalent to performing the ADM decomposition and then setting the signature of the Lorentzian manifold to zero. We use this uniqueness to write a generic expansion for the curvature tensors and construct Galilean and Carrollian limits of all metric theories of gravity of finite order ranging from the $f(R)$ gravity to a completely generic higher derivative theory, the $f(g_{\mu\nu},R_{\mu\nu\sigma \rho},\nabla_{\mu})$ gravity. We present an algorithm for calculation of the $n$-th order of the Galilean and Carrollian expansions that transforms this problem into a constrained optimization problem. We also derive the condition under which a gravitational theory becomes a modification of general relativity in both limits simultaneously.
- G. Dautcourt, PostNewtonian extension of the Newton-Cartan theory, Class. Quant. Grav. 14, A109 (1997), arXiv:gr-qc/9610036 .
- W. Tichy and E. E. Flanagan, Covariant formulation of the post-1-Newtonian approximation to General Relativity, Phys. Rev. D 84, 044038 (2011), arXiv:1101.0588 [gr-qc] .
- D. Van den Bleeken, Torsional Newton–Cartan gravity from the large c expansion of general relativity, Class. Quant. Grav. 34, 185004 (2017), arXiv:1703.03459 [gr-qc] .
- D. Hansen, J. Hartong, and N. A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett. 122, 061106 (2019), arXiv:1807.04765 [hep-th] .
- E. Bergshoeff, J. Gomis, and P. Salgado-Rebolledo, Non-relativistic limits and three-dimensional coadjoint Poincaré gravity, Proc. Roy. Soc. Lond. A 476, 20200106 (2020a), arXiv:2001.11790 [hep-th] .
- M. Cariglia, General theory of Galilean gravity, Phys. Rev. D 98, 084057 (2018), arXiv:1811.03446 [gr-qc] .
- P. Concha, E. Rodríguez, and G. Rubio, Non-relativistic gravity theories in four spacetime dimensions, JHEP 02, 191, arXiv:2210.04101 [hep-th] .
- E. Bergshoeff, J. Rosseel, and T. Zojer, Newton–Cartan (super)gravity as a non-relativistic limit, Class. Quant. Grav. 32, 205003 (2015), arXiv:1505.02095 [hep-th] .
- D. Hansen, J. Hartong, and N. A. Obers, Non-Relativistic Gravity and its Coupling to Matter, JHEP 06, 145, arXiv:2001.10277 [gr-qc] .
- A. Guerrieri and R. F. Sobreiro, Non-relativistic limit of gravity theories in the first order formalism, JHEP 03, 104, arXiv:2010.14918 [gr-qc] .
- J. Hartong, N. A. Obers, and G. Oling, Review on non-relativistic gravity, Frontiers in Physics 11, 10.3389/fphy.2023.1116888 (2023).
- R. Banerjee and S. Bhattacharya, New formulation of Galilean relativistic Maxwell theory, Phys. Rev. D 107, 105022 (2023), arXiv:2211.12023 [hep-th] .
- R. Banerjee, A. Mitra, and P. Mukherjee, A new formulation of non-relativistic diffeomorphism invariance, Phys. Lett. B 737, 369 (2014), arXiv:1404.4491 [gr-qc] .
- R. Banerjee and P. Mukherjee, Torsional Newton–Cartan geometry from Galilean gauge theory, Class. Quant. Grav. 33, 225013 (2016), arXiv:1604.06893 [gr-qc] .
- R. Banerjee, A. Mitra, and P. Mukherjee, Localization of the Galilean symmetry and dynamical realization of Newton-Cartan geometry, Class. Quant. Grav. 32, 045010 (2015), arXiv:1407.3617 [hep-th] .
- B. Grinstein and S. Pal, Existence and construction of galilean invariant z≠2𝑧2z\neq 2italic_z ≠ 2 theories, Phys. Rev. D 97, 125006 (2018).
- M. Geracie, Galilean Geometry in Condensed Matter Systems, Other thesis (2016), arXiv:1611.01198 [hep-th] .
- A. Jain, Galilean anomalies and their effect on hydrodynamics, Phys. Rev. D 93, 065007 (2016).
- R. Banerjee and P. Mukherjee, Subtleties of nonrelativistic reduction and applications, Nuclear Physics B 938, 1 (2019).
- G. Oling and Z. Yan, Aspects of Nonrelativistic Strings, Front. in Phys. 10, 832271 (2022), arXiv:2202.12698 [hep-th] .
- J. Hartong and E. Have, Nonrelativistic expansion of closed bosonic strings, Phys. Rev. Lett. 128, 021602 (2022).
- J. Hartong and E. Have, Nonrelativistic approximations of closed bosonic string theory, JHEP 02, 153, arXiv:2211.01795 [hep-th] .
- J.-M. Levy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincaré, Annales de l’institut Henri Poincaré. Section A, Physique Théorique 3, 1 (1965).
- N. Sen Gupta, On an analogue of the galilei group, Nuovo Cimento A (1965-1970) 44, 512 (1966).
- L. Donnay and C. Marteau, Carrollian Physics at the Black Hole Horizon, Class. Quant. Grav. 36, 165002 (2019), arXiv:1903.09654 [hep-th] .
- R. H. Price and K. S. Thorne, Membrane Viewpoint on Black Holes: Properties and Evolution of the Stretched Horizon, Phys. Rev. D 33, 915 (1986).
- K. S. Thorne, R. H. Price, and D. A. MacDonald, Black holes: The membrane paradigm (1986).
- T. Damour, Black Hole Eddy Currents, Phys. Rev. D 18, 3598 (1978).
- P. M. Zhang, H.-X. Zeng, and P. A. Horvathy, MultiCarroll dynamics (2023), arXiv:2306.07002 [gr-qc] .
- E. Bergshoeff, J. Gomis, and G. Longhi, Dynamics of carroll particles, Classical and Quantum Gravity 31, 205009 (2014).
- L. Marsot, Planar Carrollean dynamics, and the Carroll quantum equation, J. Geom. Phys. 179, 104574 (2022), arXiv:2110.08489 [math-ph] .
- S. S. Kubakaddi, Giant thermopower and power factor in magic angle twisted bilayer graphene at low temperature, Journal of Physics: Condensed Matter 33, 245704 (2021).
- O. Kasikci, M. Ozkan, and Y. Pang, Carrollian origin of spacetime subsystem symmetry, Phys. Rev. D 108, 045020 (2023), arXiv:2304.11331 [hep-th] .
- D. Rivera-Betancour and M. Vilatte, Revisiting the carrollian scalar field, Phys. Rev. D 106, 085004 (2022).
- E. Bergshoeff, J. Figueroa-O’Farrill, and J. Gomis, A non-lorentzian primer (2022), arXiv:2206.12177 [hep-th] .
- M. Henneaux and P. Salgado-Rebolledo, Carroll contractions of Lorentz-invariant theories, JHEP 11, 180, arXiv:2109.06708 [hep-th] .
- A. Bagchi, A. Mehra, and P. Nandi, Field Theories with Conformal Carrollian Symmetry, JHEP 05, 108, arXiv:1901.10147 [hep-th] .
- A. Bagchi, K. S. Kolekar, and A. Shukla, Carrollian Origins of Bjorken Flow, Phys. Rev. Lett. 130, 241601 (2023b), arXiv:2302.03053 [hep-th] .
- B. Bonga and K. Prabhu, BMS-like symmetries in cosmology, Phys. Rev. D 102, 104043 (2020), arXiv:2009.01243 [gr-qc] .
- A. Bagchi, A. Banerjee, and P. Parekh, Tensionless path from closed to open strings, Phys. Rev. Lett. 123, 111601 (2019b).
- B. Cardona, J. Gomis, and J. M. Pons, Dynamics of Carroll Strings, JHEP 07, 050, arXiv:1605.05483 [hep-th] .
- A. Pérez, Asymptotic symmetries in Carrollian theories of gravity, JHEP 12, 173, arXiv:2110.15834 [hep-th] .
- A. Pérez, Asymptotic symmetries in Carrollian theories of gravity with a negative cosmological constant, JHEP 09, 044, arXiv:2202.08768 [hep-th] .
- J. Hartong, Gauging the Carroll Algebra and Ultra-Relativistic Gravity, JHEP 08, 069, arXiv:1505.05011 [hep-th] .
- J. Gomis, D. Hidalgo, and P. Salgado-Rebolledo, Non-relativistic and Carrollian limits of Jackiw-Teitelboim gravity, JHEP 05, 162, arXiv:2011.15053 [hep-th] .
- E. A. Bergshoeff, J. Gomis, and A. Kleinschmidt, Non-Lorentzian theories with and without constraints, JHEP 01, 167, arXiv:2210.14848 [hep-th] .
- A. Guerrieri and R. F. Sobreiro, Carroll limit of four-dimensional gravity theories in the first order formalism, Class. Quant. Grav. 38, 245003 (2021b), arXiv:2107.10129 [gr-qc] .
- D. Grumiller and W. Merbis, Near horizon dynamics of three dimensional black holes, SciPost Phys. 8, 010 (2020), arXiv:1906.10694 [hep-th] .
- J. Redondo-Yuste and L. Lehner, Non-linear black hole dynamics and Carrollian fluids (2022), arXiv:2212.06175 [gr-qc] .
- J. Bicak, D. Kubiznak, and T. R. Perche, Monarch Migration of Carrollian Particles on the Black Hole Horizon (2023), arXiv:2302.11639 [gr-qc] .
- L. Marsot, P.-M. Zhang, and P. Horvathy, Anyonic spin-Hall effect on the black hole horizon, Phys. Rev. D 106, L121503 (2022b), arXiv:2207.06302 [gr-qc] .
- Y. Herfray, Carrollian manifolds and null infinity: a view from Cartan geometry, Class. Quant. Grav. 39, 215005 (2022), arXiv:2112.09048 [gr-qc] .
- M. Henneaux, Geometry of Zero Signature Space-times, Bull. Soc. Math. Belg. 31, 47 (1979).
- M. Niedermaier, Higher derivative gravity’s anti-Newtonian limit and the Caldirola–Kanai oscillator, Class. Quant. Grav. 40, 025017 (2023).
- K. N. Lian, Gravity Theories via Algebra Gauging, (2021), arXiv:2112.13403 [gr-qc] .
- P. Tadros and I. Kolář, Carrollian limit of quadratic gravity, Phys. Rev. D 108, 124051 (2023), arXiv:2307.13760 [gr-qc] .
- E. Bergshoeff, J. M. Izquierdo, and L. Romano, Carroll versus Galilei from a Brane Perspective, JHEP 10, 066, arXiv:2003.03062 [hep-th] .
- K. H. Borgwardt, The simplex method: a probabilistic analysis, Vol. 1 (Springer Science & Business Media, 2012).
- T. Biswas, A. S. Koshelev, and A. Mazumdar, Consistent higher derivative gravitational theories with stable de Sitter and anti–de Sitter backgrounds, Phys. Rev. D 95, 043533 (2017), arXiv:1606.01250 [gr-qc] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.