Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

$Z^\prime$ induced forward dominant processes in $μ$TRISTAN experiment (2401.00696v2)

Published 1 Jan 2024 in hep-ph and hep-ex

Abstract: General $U(1)$ extension of the Standard Model (SM) is a well motivated beyond the Standard Model(BSM) scenario where three generations of right handed neutrinos (RHNs) are introduced to cancel gauge and mixed gauge-gravity anomalies. After the $U(1)_X$ is broken, RHNs participate in the seesaw mechanism to generate light neutrino masses satisfying neutrino oscillation data. In addition to that, a neutral gauge boson $Z\prime$ is evolved which interacts with the left and right handed fermions differently manifesting chiral nature of the model which could be probed in future collider experiments. As a result, if we consider $\mu+ e-$ and $\mu+ \mu+$ collisions in $\mu$TRISTAN experiment $Z\prime$ mediated $2\to2$ scattering will appear in $t-$ and $u-$channels depending on the initial and final states being accompanied by the photon and $Z$ mediated interactions. This will result well motivated resulting forward dominant scenarios giving rise to sizable left-right asymmetry. Estimating constrains on general $U(1)$ coupling from LEP-II and LHC for different $U(1)_X$ charges, we calculate differential and integrated scattering cross section and left-right asymmetry for $\mu+ e- \to \mu+ e-$ and $\mu+ \mu+ \to \mu+ \mu+$ processes which could be probed at $\mu$TRISTAN experiment further enlightening the interaction between $Z\prime$ and charged leptons and the $U(1)_X$ breaking scale.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.
  2. A. Leike, “The Phenomenology of extra neutral gauge bosons,” Phys. Rept. 317 (1999) 143–250, arXiv:hep-ph/9805494 [hep-ph].
  3. P. Langacker, “The Physics of Heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Gauge Bosons,” Rev. Mod. Phys. 81 (2009) 1199–1228, arXiv:0801.1345 [hep-ph].
  4. J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” Phys. Rev. D 10 (1974) 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
  5. R. Mohapatra and J. C. Pati, “A Natural Left-Right Symmetry,” Phys. Rev. D 11 (1975) 2558.
  6. G. Senjanovic and R. N. Mohapatra, “Exact Left-Right Symmetry and Spontaneous Violation of Parity,” Phys. Rev. D 12 (1975) 1502.
  7. H. Georgi, “The State of the Art—Gauge Theories,” AIP Conf. Proc. 23 (1975) 575–582.
  8. H. Fritzsch and P. Minkowski, “Unified Interactions of Leptons and Hadrons,” Annals Phys. 93 (1975) 193–266.
  9. F. Gursey, P. Ramond, and P. Sikivie, “A Universal Gauge Theory Model Based on E6,” Phys. Lett. B 60 (1976) 177–180.
  10. Y. Achiman and B. Stech, “Quark Lepton Symmetry and Mass Scales in an E6 Unified Gauge Model,” Phys. Lett. B 77 (1978) 389–393.
  11. A. Davidson, “B−L𝐵𝐿B-Litalic_B - italic_L as the fourth color within an SU⁢(2)L×U⁢(1)R×U⁢(1)SUsubscript2𝐿Usubscript1𝑅U1\mathrm{SU}(2)_{L}\times\mathrm{U}(1)_{R}\times\mathrm{U}(1)roman_SU ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × roman_U ( 1 ) start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT × roman_U ( 1 ) model,” Phys. Rev. D 20 (1979) 776.
  12. A. Davidson, M. Koca, and K. C. Wali, “U(1) as the Minimal Horizontal Gauge Symmetry,” Phys. Rev. Lett. 43 (1979) 92.
  13. R. Marshak and R. N. Mohapatra, “Quark - Lepton Symmetry and B−L𝐵𝐿B-Litalic_B - italic_L as the U(1) Generator of the Electroweak Symmetry Group,” Phys. Lett. B 91 (1980) 222–224.
  14. R. N. Mohapatra and R. Marshak, “Local B−L𝐵𝐿B-Litalic_B - italic_L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations,” Phys. Rev. Lett. 44 (1980) 1316–1319. [Erratum: Phys.Rev.Lett. 44, 1643 (1980)].
  15. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, S. Schael et al., “Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP,” Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex].
  16. D0 Collaboration, V. M. Abazov et al., “Search for a Heavy Neutral Gauge Boson in the Dielectron Channel with 5.4 f⁢b−1𝑓superscript𝑏1fb^{-1}italic_f italic_b start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 1.96 TeV,” Phys. Lett. B 695 (2011) 88–94, arXiv:1008.2023 [hep-ex].
  17. CDF Collaboration, T. Aaltonen et al., “Search for High Mass Resonances Decaying to Muon Pairs in s=1.96𝑠1.96\sqrt{s}=1.96square-root start_ARG italic_s end_ARG = 1.96 TeV p⁢p¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG Collisions,” Phys. Rev. Lett. 106 (2011) 121801, arXiv:1101.4578 [hep-ex].
  18. ATLAS Collaboration, G. Aad et al., “Search for high-mass dilepton resonances using 139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data collected at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Lett. B 796 (2019) 68–87, arXiv:1903.06248 [hep-ex].
  19. CMS Collaboration, C. Collaboration, “Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,”. CMS-PAS-EXO-19-019.
  20. Y. Li, F. Petriello, and S. Quackenbush, “Reconstructing a Z-prime Lagrangian using the LHC and low-energy data,” Phys. Rev. D 80 (2009) 055018, arXiv:0906.4132 [hep-ph].
  21. T. Appelquist, B. A. Dobrescu, and A. R. Hopper, “Nonexotic Neutral Gauge Bosons,” Phys. Rev. D 68 (2003) 035012, arXiv:hep-ph/0212073.
  22. C. Coriano, L. Delle Rose, and C. Marzo, “Vacuum Stability in U(1)-Prime Extensions of the Standard Model with TeV Scale Right Handed Neutrinos,” Phys. Lett. B 738 (2014) 13–19, arXiv:1407.8539 [hep-ph].
  23. A. Das, S. Oda, N. Okada, and D.-s. Takahashi, “Classically conformal U(1)’ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds,” Phys. Rev. D 93 no. 11, (2016) 115038, arXiv:1605.01157 [hep-ph].
  24. A. Das, P. S. B. Dev, Y. Hosotani, and S. Mandal, “Probing the minimal U(1)X model at future electron-positron colliders via fermion pair-production channels,” Phys. Rev. D 105 no. 11, (2022) 115030, arXiv:2104.10902 [hep-ph].
  25. S. K. A., A. Das, G. Lambiase, T. Nomura, and Y. Orikasa, “Probing chiral and flavored Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT from cosmic bursts through neutrino interactions,” arXiv:2308.14483 [hep-ph].
  26. C. A. Heusch and F. Cuypers, “Physics with like-sign muon beams in a TeV muon collider,” AIP Conf. Proc. 352 (1996) 219–231, arXiv:hep-ph/9508230.
  27. A. B. Arbuzov, S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, and V. L. Yermolchyk, “Electroweak effects in polarized muon-electron scattering,” Phys. Rev. D 105 no. 3, (2022) 033009, arXiv:2112.09361 [hep-ph].
  28. S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, R. Sadykov, and V. L. Yermolchyk, “One-Loop Electroweak Radiative Corrections to Polarized Møller Scattering,” JETP Lett. 115 no. 9, (2022) 495–501, arXiv:2111.11490 [hep-ph].
  29. Y. Hamada, R. Kitano, R. Matsudo, and H. Takaura, “Precision μ𝜇\muitalic_μ+μ𝜇\muitalic_μ+ and μ𝜇\muitalic_μ+e−-- elastic scatterings,” PTEP 2023 no. 1, (2023) 013B07, arXiv:2210.11083 [hep-ph].
  30. Y. Hamada, R. Kitano, R. Matsudo, H. Takaura, and M. Yoshida, “μ𝜇\muitalic_μTRISTAN,” PTEP 2022 no. 5, (2022) 053B02, arXiv:2201.06664 [hep-ph].
  31. K. Fridell, R. Kitano, and R. Takai, “Lepton flavor physics at μ𝜇\muitalic_μ+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPTμ𝜇\muitalic_μ+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT colliders,” JHEP 06 (2023) 086, arXiv:2304.14020 [hep-ph].
  32. G. Lichtenstein, M. A. Schmidt, G. Valencia, and R. R. Volkas, “Complementarity of μ𝜇\muitalic_μTRISTAN and Belle II in searches for charged-lepton flavour violation,” Phys. Lett. B 845 (2023) 138144, arXiv:2307.11369 [hep-ph].
  33. P. S. B. Dev, J. Heeck, and A. Thapa, “Neutrino mass models at μ𝜇\muitalic_μTRISTAN,” arXiv:2309.06463 [hep-ph].
  34. E. Celada, T. Han, W. Kilian, N. Kreher, Y. Ma, F. Maltoni, D. Pagani, J. Reuter, T. Striegl, and K. Xie, “Probing Higgs-muon interactions at a multi-TeV muon collider,” arXiv:2312.13082 [hep-ph].
  35. A. Goudelis, J. Kriewald, E. Pinsard, and A. M. Teixeira, “cLFV leptophilic Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT as a dark matter portal: prospects for colliders,” arXiv:2312.14103 [hep-ph].
  36. M. Abe et al., “A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment,” PTEP 2019 no. 5, (2019) 053C02, arXiv:1901.03047 [physics.ins-det].
  37. F. Bossi and P. Ciafaloni, “Lepton Flavor Violation at muon-electron colliders,” JHEP 10 (2020) 033, arXiv:2003.03997 [hep-ph].
  38. M. Lu, A. M. Levin, C. Li, A. Agapitos, Q. Li, F. Meng, S. Qian, J. Xiao, and T. Yang, “The physics case for an electron-muon collider,” Adv. High Energy Phys. 2021 (2021) 6693618, arXiv:2010.15144 [hep-ph].
  39. K. Cheung and Z. S. Wang, “Physics potential of a muon-proton collider,” Phys. Rev. D 103 (2021) 116009, arXiv:2101.10476 [hep-ph].
  40. J.-C. Yang, Z.-B. Qing, X.-Y. Han, Y.-C. Guo, and T. Li, “Tri-photon at muon collider: a new process to probe the anomalous quartic gauge couplings,” JHEP 22 (2020) 053, arXiv:2204.08195 [hep-ph].
  41. W. Liu and K.-P. Xie, “Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves,” JHEP 04 (2021) 015, arXiv:2101.10469 [hep-ph].
  42. J.-L. Yang, C.-H. Chang, and T.-F. Feng, “The leptonic di-flavor and di-number violation processes at high energy μ±⁢μ±superscript𝜇plus-or-minussuperscript𝜇plus-or-minus\mu^{\pm}\mu^{\pm}italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT colliders,” arXiv:2302.13247 [hep-ph].
  43. A. Das, T. Nomura, and T. Shimomura, “Multi muon/anti-muon signals via productions of gauge and scalar bosons in a U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT model at muonic colliders,” Eur. Phys. J. C 83 no. 9, (2023) 786, arXiv:2212.11674 [hep-ph].
  44. G. Lichtenstein, M. A. Schmidt, G. Valencia, and R. R. Volkas, “Constraints on doubly-charged-scalar lepton-triality models from 1-loop processes,” arXiv:2312.09409 [hep-ph].
  45. E. Eichten, K. D. Lane, and M. E. Peskin, “New Tests for Quark and Lepton Substructure,” Phys. Rev. Lett. 50 (1983) 811–814.
  46. LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavor Group Collaboration, “A Combination of preliminary electroweak measurements and constraints on the standard model,” arXiv:hep-ex/0312023.
  47. H. Kroha, “Compositeness limits from E+ E- annihilation revisited,” Phys. Rev. D 46 (1992) 58–69.
  48. M. Carena, A. Daleo, B. A. Dobrescu, and T. M. Tait, “Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT gauge bosons at the Tevatron,” Phys. Rev. D 70 (2004) 093009, arXiv:hep-ph/0408098.
  49. LCC Physics Working Group Collaboration, K. Fujii et al., “Tests of the Standard Model at the International Linear Collider,” arXiv:1908.11299 [hep-ex].
  50. S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, and V. L. Yermolchyk, “One-loop electroweak radiative corrections to polarized Møller scattering,” JETP Lett. 115 no. 9, (2022) 495–501, arXiv:2203.10538 [hep-ph].
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com