$Z^\prime$ induced forward dominant processes in $μ$TRISTAN experiment (2401.00696v2)
Abstract: General $U(1)$ extension of the Standard Model (SM) is a well motivated beyond the Standard Model(BSM) scenario where three generations of right handed neutrinos (RHNs) are introduced to cancel gauge and mixed gauge-gravity anomalies. After the $U(1)_X$ is broken, RHNs participate in the seesaw mechanism to generate light neutrino masses satisfying neutrino oscillation data. In addition to that, a neutral gauge boson $Z\prime$ is evolved which interacts with the left and right handed fermions differently manifesting chiral nature of the model which could be probed in future collider experiments. As a result, if we consider $\mu+ e-$ and $\mu+ \mu+$ collisions in $\mu$TRISTAN experiment $Z\prime$ mediated $2\to2$ scattering will appear in $t-$ and $u-$channels depending on the initial and final states being accompanied by the photon and $Z$ mediated interactions. This will result well motivated resulting forward dominant scenarios giving rise to sizable left-right asymmetry. Estimating constrains on general $U(1)$ coupling from LEP-II and LHC for different $U(1)_X$ charges, we calculate differential and integrated scattering cross section and left-right asymmetry for $\mu+ e- \to \mu+ e-$ and $\mu+ \mu+ \to \mu+ \mu+$ processes which could be probed at $\mu$TRISTAN experiment further enlightening the interaction between $Z\prime$ and charged leptons and the $U(1)_X$ breaking scale.
- Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.
- A. Leike, “The Phenomenology of extra neutral gauge bosons,” Phys. Rept. 317 (1999) 143–250, arXiv:hep-ph/9805494 [hep-ph].
- P. Langacker, “The Physics of Heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Gauge Bosons,” Rev. Mod. Phys. 81 (2009) 1199–1228, arXiv:0801.1345 [hep-ph].
- J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” Phys. Rev. D 10 (1974) 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
- R. Mohapatra and J. C. Pati, “A Natural Left-Right Symmetry,” Phys. Rev. D 11 (1975) 2558.
- G. Senjanovic and R. N. Mohapatra, “Exact Left-Right Symmetry and Spontaneous Violation of Parity,” Phys. Rev. D 12 (1975) 1502.
- H. Georgi, “The State of the Art—Gauge Theories,” AIP Conf. Proc. 23 (1975) 575–582.
- H. Fritzsch and P. Minkowski, “Unified Interactions of Leptons and Hadrons,” Annals Phys. 93 (1975) 193–266.
- F. Gursey, P. Ramond, and P. Sikivie, “A Universal Gauge Theory Model Based on E6,” Phys. Lett. B 60 (1976) 177–180.
- Y. Achiman and B. Stech, “Quark Lepton Symmetry and Mass Scales in an E6 Unified Gauge Model,” Phys. Lett. B 77 (1978) 389–393.
- A. Davidson, “B−L𝐵𝐿B-Litalic_B - italic_L as the fourth color within an SU(2)L×U(1)R×U(1)SUsubscript2𝐿Usubscript1𝑅U1\mathrm{SU}(2)_{L}\times\mathrm{U}(1)_{R}\times\mathrm{U}(1)roman_SU ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × roman_U ( 1 ) start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT × roman_U ( 1 ) model,” Phys. Rev. D 20 (1979) 776.
- A. Davidson, M. Koca, and K. C. Wali, “U(1) as the Minimal Horizontal Gauge Symmetry,” Phys. Rev. Lett. 43 (1979) 92.
- R. Marshak and R. N. Mohapatra, “Quark - Lepton Symmetry and B−L𝐵𝐿B-Litalic_B - italic_L as the U(1) Generator of the Electroweak Symmetry Group,” Phys. Lett. B 91 (1980) 222–224.
- R. N. Mohapatra and R. Marshak, “Local B−L𝐵𝐿B-Litalic_B - italic_L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations,” Phys. Rev. Lett. 44 (1980) 1316–1319. [Erratum: Phys.Rev.Lett. 44, 1643 (1980)].
- ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, S. Schael et al., “Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP,” Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex].
- D0 Collaboration, V. M. Abazov et al., “Search for a Heavy Neutral Gauge Boson in the Dielectron Channel with 5.4 fb−1𝑓superscript𝑏1fb^{-1}italic_f italic_b start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of pp¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 1.96 TeV,” Phys. Lett. B 695 (2011) 88–94, arXiv:1008.2023 [hep-ex].
- CDF Collaboration, T. Aaltonen et al., “Search for High Mass Resonances Decaying to Muon Pairs in s=1.96𝑠1.96\sqrt{s}=1.96square-root start_ARG italic_s end_ARG = 1.96 TeV pp¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG Collisions,” Phys. Rev. Lett. 106 (2011) 121801, arXiv:1101.4578 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for high-mass dilepton resonances using 139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of pp𝑝𝑝ppitalic_p italic_p collision data collected at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Lett. B 796 (2019) 68–87, arXiv:1903.06248 [hep-ex].
- CMS Collaboration, C. Collaboration, “Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,”. CMS-PAS-EXO-19-019.
- Y. Li, F. Petriello, and S. Quackenbush, “Reconstructing a Z-prime Lagrangian using the LHC and low-energy data,” Phys. Rev. D 80 (2009) 055018, arXiv:0906.4132 [hep-ph].
- T. Appelquist, B. A. Dobrescu, and A. R. Hopper, “Nonexotic Neutral Gauge Bosons,” Phys. Rev. D 68 (2003) 035012, arXiv:hep-ph/0212073.
- C. Coriano, L. Delle Rose, and C. Marzo, “Vacuum Stability in U(1)-Prime Extensions of the Standard Model with TeV Scale Right Handed Neutrinos,” Phys. Lett. B 738 (2014) 13–19, arXiv:1407.8539 [hep-ph].
- A. Das, S. Oda, N. Okada, and D.-s. Takahashi, “Classically conformal U(1)’ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds,” Phys. Rev. D 93 no. 11, (2016) 115038, arXiv:1605.01157 [hep-ph].
- A. Das, P. S. B. Dev, Y. Hosotani, and S. Mandal, “Probing the minimal U(1)X model at future electron-positron colliders via fermion pair-production channels,” Phys. Rev. D 105 no. 11, (2022) 115030, arXiv:2104.10902 [hep-ph].
- S. K. A., A. Das, G. Lambiase, T. Nomura, and Y. Orikasa, “Probing chiral and flavored Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT from cosmic bursts through neutrino interactions,” arXiv:2308.14483 [hep-ph].
- C. A. Heusch and F. Cuypers, “Physics with like-sign muon beams in a TeV muon collider,” AIP Conf. Proc. 352 (1996) 219–231, arXiv:hep-ph/9508230.
- A. B. Arbuzov, S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, and V. L. Yermolchyk, “Electroweak effects in polarized muon-electron scattering,” Phys. Rev. D 105 no. 3, (2022) 033009, arXiv:2112.09361 [hep-ph].
- S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, R. Sadykov, and V. L. Yermolchyk, “One-Loop Electroweak Radiative Corrections to Polarized Møller Scattering,” JETP Lett. 115 no. 9, (2022) 495–501, arXiv:2111.11490 [hep-ph].
- Y. Hamada, R. Kitano, R. Matsudo, and H. Takaura, “Precision μ𝜇\muitalic_μ+μ𝜇\muitalic_μ+ and μ𝜇\muitalic_μ+e−-- elastic scatterings,” PTEP 2023 no. 1, (2023) 013B07, arXiv:2210.11083 [hep-ph].
- Y. Hamada, R. Kitano, R. Matsudo, H. Takaura, and M. Yoshida, “μ𝜇\muitalic_μTRISTAN,” PTEP 2022 no. 5, (2022) 053B02, arXiv:2201.06664 [hep-ph].
- K. Fridell, R. Kitano, and R. Takai, “Lepton flavor physics at μ𝜇\muitalic_μ+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPTμ𝜇\muitalic_μ+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT colliders,” JHEP 06 (2023) 086, arXiv:2304.14020 [hep-ph].
- G. Lichtenstein, M. A. Schmidt, G. Valencia, and R. R. Volkas, “Complementarity of μ𝜇\muitalic_μTRISTAN and Belle II in searches for charged-lepton flavour violation,” Phys. Lett. B 845 (2023) 138144, arXiv:2307.11369 [hep-ph].
- P. S. B. Dev, J. Heeck, and A. Thapa, “Neutrino mass models at μ𝜇\muitalic_μTRISTAN,” arXiv:2309.06463 [hep-ph].
- E. Celada, T. Han, W. Kilian, N. Kreher, Y. Ma, F. Maltoni, D. Pagani, J. Reuter, T. Striegl, and K. Xie, “Probing Higgs-muon interactions at a multi-TeV muon collider,” arXiv:2312.13082 [hep-ph].
- A. Goudelis, J. Kriewald, E. Pinsard, and A. M. Teixeira, “cLFV leptophilic Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT as a dark matter portal: prospects for colliders,” arXiv:2312.14103 [hep-ph].
- M. Abe et al., “A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment,” PTEP 2019 no. 5, (2019) 053C02, arXiv:1901.03047 [physics.ins-det].
- F. Bossi and P. Ciafaloni, “Lepton Flavor Violation at muon-electron colliders,” JHEP 10 (2020) 033, arXiv:2003.03997 [hep-ph].
- M. Lu, A. M. Levin, C. Li, A. Agapitos, Q. Li, F. Meng, S. Qian, J. Xiao, and T. Yang, “The physics case for an electron-muon collider,” Adv. High Energy Phys. 2021 (2021) 6693618, arXiv:2010.15144 [hep-ph].
- K. Cheung and Z. S. Wang, “Physics potential of a muon-proton collider,” Phys. Rev. D 103 (2021) 116009, arXiv:2101.10476 [hep-ph].
- J.-C. Yang, Z.-B. Qing, X.-Y. Han, Y.-C. Guo, and T. Li, “Tri-photon at muon collider: a new process to probe the anomalous quartic gauge couplings,” JHEP 22 (2020) 053, arXiv:2204.08195 [hep-ph].
- W. Liu and K.-P. Xie, “Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves,” JHEP 04 (2021) 015, arXiv:2101.10469 [hep-ph].
- J.-L. Yang, C.-H. Chang, and T.-F. Feng, “The leptonic di-flavor and di-number violation processes at high energy μ±μ±superscript𝜇plus-or-minussuperscript𝜇plus-or-minus\mu^{\pm}\mu^{\pm}italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT colliders,” arXiv:2302.13247 [hep-ph].
- A. Das, T. Nomura, and T. Shimomura, “Multi muon/anti-muon signals via productions of gauge and scalar bosons in a U(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT model at muonic colliders,” Eur. Phys. J. C 83 no. 9, (2023) 786, arXiv:2212.11674 [hep-ph].
- G. Lichtenstein, M. A. Schmidt, G. Valencia, and R. R. Volkas, “Constraints on doubly-charged-scalar lepton-triality models from 1-loop processes,” arXiv:2312.09409 [hep-ph].
- E. Eichten, K. D. Lane, and M. E. Peskin, “New Tests for Quark and Lepton Substructure,” Phys. Rev. Lett. 50 (1983) 811–814.
- LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavor Group Collaboration, “A Combination of preliminary electroweak measurements and constraints on the standard model,” arXiv:hep-ex/0312023.
- H. Kroha, “Compositeness limits from E+ E- annihilation revisited,” Phys. Rev. D 46 (1992) 58–69.
- M. Carena, A. Daleo, B. A. Dobrescu, and T. M. Tait, “Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT gauge bosons at the Tevatron,” Phys. Rev. D 70 (2004) 093009, arXiv:hep-ph/0408098.
- LCC Physics Working Group Collaboration, K. Fujii et al., “Tests of the Standard Model at the International Linear Collider,” arXiv:1908.11299 [hep-ex].
- S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, and V. L. Yermolchyk, “One-loop electroweak radiative corrections to polarized Møller scattering,” JETP Lett. 115 no. 9, (2022) 495–501, arXiv:2203.10538 [hep-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.