Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 145 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models (2401.00376v2)

Published 31 Dec 2023 in cond-mat.str-el

Abstract: We investigate the magnetic excitations of the trimerized Heisenberg models with intra-trimer interaction $J_1$ and inter-trimer interaction $J_2$ on four different two-dimensional lattices using a combination of stochastic series expansion quantum Monte Carlo (SSE QMC) and stochastic analytic continuation methods (SAC), complemented by cluster perturbation theory (CPT). These models exhibit quasi-particle-like excitations when $g=J_2/J_1$ is small, characterized by low-energy magnons, intermediate-energy doublons, and high-energy quartons. The low-energy magnons are associated with the magnetic ground states. They can be described by the linear spin wave theory (LSWT) of the effective block spin model and the original spin model. Doublons and quartons emerge from the corresponding internal excitations of the trimers with distinct energy levels, which can be effectively analyzed using perturbation theory when the ratio of exchange interactions $g$ is small. In this small $g$ regime, we observe a clear separation between the magnon and higher-energy spectra. However, as $g$ increases, these three spectra gradually merge into the magnon modes or continua. Nevertheless, the LSWT fails to provide quantitative descriptions of the higher-energy excitation bands due to significant quantum fluctuations. Notably, in the Collinear II and trimerized hexagon lattice, a broad continuum emerges above the single-magnon spectrum, originating from the quasi-1D physics due to the dilute connections between chains. Our numerical analysis of these 2D trimers yields valuable theoretical predictions and explanations for the inelastic neutron scattering (INS) spectra of 2D magnetic materials featuring trimerized lattices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. D. Pines, Elementary excitations in solids (CRC Press, 2018).
  2. A. Chumak and H. Schultheiss, Magnonics: Spin waves connecting charges, spins and photons, arXiv:1901.07021  (2019).
  3. N. M. R. Peres and M. A. N. Araújo, Spin-wave dispersion in La2⁢CuO4subscriptLa2subscriptCuO4{{\mathrm{La}}}_{2}{{\mathrm{CuO}}}_{4}roman_La start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CuO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, Phys. Rev. B 65, 132404 (2002).
  4. M. Lohöfer and S. Wessel, Excitation-gap scaling near quantum critical three-dimensional antiferromagnets, Phys. Rev. Lett. 118, 147206 (2017).
  5. X. Ran, N. Ma, and D.-X. Yao, Criticality and scaling corrections for two-dimensional Heisenberg models in plaquette patterns with strong and weak couplings, Phys. Rev. B 99, 174434 (2019).
  6. Y. Tan and D.-X. Yao, Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions, Frontiers of Physics 18, 33309 (2023).
  7. S. F. Gull and J. Skilling, Maximum entropy method in image processing, IET Vol. 131, 646 (1984).
  8. D. Bergeron and A.-M. S. Tremblay, Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation, Phys. Rev. E 94, 023303 (2016).
  9. A. W. Sandvik, Stochastic method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 57, 10287 (1998).
  10. A. W. Sandvik, Constrained sampling method for analytic continuation, Phys. Rev. E 94, 063308 (2016).
  11. K. S. D. Beach, Identifying the maximum entropy method as a special limit of stochastic analytic continuation, arXiv:cond-mat/0403055  (2004).
  12. P.-O. Löwdin, A note on the quantum-mechanical perturbation theory, J. Chem. Phys. 19, 1396 (1951).
  13. A. L. Chernyshev and M. E. Zhitomirsky, Magnon decay in noncollinear quantum antiferromagnets, Phys. Rev. Lett. 97, 207202 (2006).
  14. T. Kato, Perturbation theory for linear operators, Vol. 132 (Springer Science & Business Media, 2013).
  15. K. Vafayi and O. Gunnarsson, Analytical continuation of spectral data from imaginary time axis to real frequency axis using statistical sampling, Phys. Rev. B 76, 035115 (2007).
  16. D. R. Reichman and E. Rabani, Analytic continuation average spectrum method for quantum liquids, J. Chem. Phys. 131, 054502 (2009).
  17. O. F. Syljuåsen, Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations, Phys. Rev. B 78, 174429 (2008).
  18. S. Fuchs, T. Pruschke, and M. Jarrell, Analytic continuation of quantum monte carlo data by stochastic analytical inference, Phys. Rev. E 81, 056701 (2010).
  19. K. Ghanem and E. Koch, Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid, Phys. Rev. B 101, 085111 (2020a).
  20. K. Ghanem and E. Koch, Extending the average spectrum method: Grid point sampling and density averaging, Phys. Rev. B 102, 035114 (2020b).
  21. H. Shao and A. W. Sandvik, Progress on stochastic analytic continuation of quantum Monte Carlo data, Phys. Rep. 1003, 1 (2023).
  22. D. Sénéchal, D. Perez, and M. Pioro-Ladriere, Spectral weight of the Hubbard model through cluster perturbation theory, Phys. Rev. Lett. 84, 522 (2000).
  23. A. S. Ovchinnikov, I. G. Bostrem, and V. E. Sinitsyn, Cluster perturbation theory for spin Hamiltonians, Theor. Math. Phys. 162, 179 (2010).
  24. A. W. Sandvik and H. G. Evertz, Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82, 024407 (2010).
  25. L. Yang and A. E. Feiguin, From deconfined spinons to coherent magnons in an antiferromagnetic Heisenberg chain with long range interactions, SciPost Phys. 10, 110 (2021).
  26. Y.-L. Liu, Multispinon excitations in the spin S= 1/2 antiferromagnetic Heisenberg model, Int. J. Mod. Phys. B 35, 2150064 (2021).
  27. T. Oguchi, Theory of spin-wave interactions in ferro- and antiferromagnetism, Phys. Rev. 117, 117 (1960).
  28. A. K. Bera, S. M. Yusuf, and D. T. Adroja, Excitations in the spin-1 trimer chain compound CaNi33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTP44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPTO1414{}_{14}start_FLOATSUBSCRIPT 14 end_FLOATSUBSCRIPT: From gapped dispersive spin waves to gapless magnetic excitations, Phys. Rev. B 97, 224413 (2018).
  29. A. A. Daniel Leykam and S. Flach, Artificial flat band systems: from lattice models to experiments, Adv. Phys. X 3, 1473052 (2018).
  30. M. A. Martín-Delgado and G. Sierra, Real Space Renormalization Group Methods and Quantum Groups, Phys. Rev. Lett. 76, 1146 (1996).
  31. M. Kargarian, R. Jafari, and A. Langari, Renormalization of entanglement in the anisotropic Heisenberg 𝑋𝑋𝑍𝑋𝑋𝑍\mathit{XXZ}italic_XXZ model, Phys. Rev. A 77, 032346 (2008).
  32. J.-Q. Cheng, W. Wu, and J.-B. Xu, Multipartite entanglement in an 𝑋𝑋𝑍𝑋𝑋𝑍\mathit{XXZ}italic_XXZ spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition, Quantum Inf. Process. 16, 1 (2017).
  33. M. Usman, A. Ilyas, and K. Khan, Quantum renormalization group of the 𝑋𝑌𝑋𝑌\mathit{XY}italic_XY model in two dimensions, Phys. Rev. A 92, 032327 (2015).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.