Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating the Effects of Sparse Attention on Cross-Encoders (2312.17649v2)

Published 29 Dec 2023 in cs.IR

Abstract: Cross-encoders are effective passage and document re-rankers but less efficient than other neural or classic retrieval models. A few previous studies have applied windowed self-attention to make cross-encoders more efficient. However, these studies did not investigate the potential and limits of different attention patterns or window sizes. We close this gap and systematically analyze how token interactions can be reduced without harming the re-ranking effectiveness. Experimenting with asymmetric attention and different window sizes, we find that the query tokens do not need to attend to the passage or document tokens for effective re-ranking and that very small window sizes suffice. In our experiments, even windows of 4 tokens still yield effectiveness on par with previous cross-encoders while reducing the memory requirements by at least 22% / 59% and being 1% / 43% faster at inference time for passages / documents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ferdinand Schlatt (5 papers)
  2. Maik Fröbe (20 papers)
  3. Matthias Hagen (33 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.