Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Club Sandwich: Gapless Phases and Phase Transitions with Non-Invertible Symmetries (2312.17322v3)

Published 28 Dec 2023 in hep-th, cond-mat.str-el, and math.CT

Abstract: We provide a generalization of the Symmetry Topological Field Theory (SymTFT) framework to characterize phase transitions and gapless phases with categorical symmetries. The central tool is the club sandwich, which extends the SymTFT setup to include an interface between two topological orders: there is a symmetry boundary, which is gapped, and a physical boundary that may be gapless, but in addition, there is also a gapped interface in the middle. The club sandwich generalizes so-called Kennedy-Tasaki (KT) transformations. Building on the results in [1, 2] on gapped phases with categorical symmetries, we construct gapless theories describing phase transitions with non-invertible symmetries by applying suitable KT transformations on known phase transitions provided by the critical Ising model and the 3-state Potts model. We also describe in detail the order parameters in these gapless theories characterizing the phase transitions, which are generally mixtures of conventional and string-type order parameters mixed together by the action of categorical symmetries. Additionally, removing the physical boundary from the club sandwiches results in club quiches, which characterize all possible gapped boundary phases with (possibly non-invertible) symmetries that can arise on the boundary of a bulk gapped phase. We also provide a mathematical characterization of gapped boundary phases with symmetries as pivotal tensor functors whose targets are pivotal multi-fusion categories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. L. Kong and H. Zheng, JHEP 08, 070 (2022), arXiv:2011.02859 [hep-th] .
  2. C. Cordova and K. Ohmori, Phys. Rev. X 13, 011034 (2023a), arXiv:2205.06243 [hep-th] .
  3. I. n. García Etxebarria, Fortsch. Phys. 70, 2200154 (2022), arXiv:2208.07508 [hep-th] .
  4. S. Chen and Y. Tanizaki,   (2022), arXiv:2210.13780 [hep-th] .
  5. A. Karasik,   (2022), arXiv:2211.05802 [hep-th] .
  6. I. n. García Etxebarria and N. Iqbal,   (2022), arXiv:2211.09570 [hep-th] .
  7. T. D. Décoppet and M. Yu,   (2022), arXiv:2211.08436 [math.CT] .
  8. C. Delcamp and A. Tiwari,   (2023), arXiv:2301.01259 [hep-th] .
  9. Y.-H. Lin and S.-H. Shao,   (2023), arXiv:2302.13900 [hep-th] .
  10. P. Putrov and J. Wang,   (2023), arXiv:2302.14862 [hep-th] .
  11. C. Zhang and C. Córdova,   (2023), arXiv:2304.01262 [cond-mat.str-el] .
  12. K. Inamura and K. Ohmori,   (2023), arXiv:2305.05774 [cond-mat.str-el] .
  13. L. Bhardwaj and S. Schafer-Nameki,   (2023a), arXiv:2304.02660 [hep-th] .
  14. L. Bhardwaj and S. Schafer-Nameki,   (2023b), arXiv:2305.17159 [hep-th] .
  15. S. D. Pace and X.-G. Wen,   (2023), arXiv:2301.05261 [cond-mat.str-el] .
  16. S. Chen and Y. Tanizaki,   (2023), arXiv:2307.00939 [hep-th] .
  17. C. Cordova and K. Ohmori,   (2023b), arXiv:2307.12927 [hep-th] .
  18. Z. Sun and Y. Zheng,   (2023), arXiv:2307.14428 [hep-th] .
  19. S. D. Pace,   (2023), arXiv:2308.05730 [cond-mat.str-el] .
  20. Y. Nagoya and S. Shimamori,   (2023), arXiv:2309.05294 [hep-th] .
  21. M. Buican and R. Radhakrishnan,   (2023), arXiv:2309.15181 [hep-th] .
  22. X. Yu,   (2023), arXiv:2310.15339 [hep-th] .
  23. W. Cao and Q. Jia,   (2023), arXiv:2310.01474 [hep-th] .
  24. K. Inamura and X.-G. Wen,   (2023), arXiv:2310.05790 [cond-mat.str-el] .
  25. S.-J. Huang and M. Cheng,   (2023), arXiv:2310.16878 [cond-mat.str-el] .
  26. R. Wen and A. C. Potter,   (2023), arXiv:2311.00050 [cond-mat.str-el] .
  27. P. R. S. Gomes,   (2023), arXiv:2303.01817 [hep-th] .
  28. S. Schafer-Nameki,   (2023), arXiv:2305.18296 [hep-th] .
  29. T. D. Brennan and S. Hong,   (2023), arXiv:2306.00912 [hep-ph] .
  30. S.-H. Shao,   (2023), arXiv:2308.00747 [hep-th] .
  31. W. Ji and X.-G. Wen, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 [cond-mat.str-el] .
  32. D. Gaiotto and J. Kulp, JHEP 02, 132 (2021), arXiv:2008.05960 [hep-th] .
  33. K. Duivenvoorden and T. Quella, Phys. Rev. B 87, 125145 (2013), arXiv:1206.2462 [cond-mat.str-el] .
  34. T. Quella, Phys. Rev. B 102, 081120 (2020), arXiv:2005.09072 [cond-mat.str-el] .
  35. T. Quella, Phys. Rev. B 103, 054404 (2021), arXiv:2011.12679 [cond-mat.str-el] .
  36. W.-T. Xu and N. Schuch, Phys. Rev. B 104, 155119 (2021), arXiv:2107.04549 [cond-mat.str-el] .
  37. A club sandwich is comprised of three slides of bread containing two distinct fillings.
  38. T. Kennedy and H. Tasaki, Communications in mathematical physics 147, 431 (1992a).
  39. T. Kennedy and H. Tasaki, Phys. Rev. B 45, 304 (1992b).
  40. A. Chatterjee and X.-G. Wen, Phys. Rev. B 108, 075105 (2023), arXiv:2205.06244 [cond-mat.str-el] .
  41. A quiche is most certainly not an open sandwich but we will retain this terminology introduced in Freed et al. (2022).
  42. We always display full spacetime dimensions.
  43. Vacua can also be understood as ground states of the system when the space is taken to be a sphere. Another characterization is in terms of topological local operators the system admits.
  44. L. Kong, Nucl. Phys. B 886, 436 (2014), arXiv:1307.8244 [cond-mat.str-el] .
  45. This is done just to ensure that the underlying boundary of the resulting gapped phase would still be the electric boundary (or a multiple of it) of the toric code. Working instead with (IV.106) produces same results with the underlying boundary being the magnetic one.
  46. Recall that charge of a twisted sector operator in a 2d theory with anomalous ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry is half. That is, the linking action of P′superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT on such an operator is ±iplus-or-minus𝑖\pm i± italic_i.
  47. The CFT actually admits an S3subscript𝑆3S_{3}italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT symmetry under which ϵitalic-ϵ\epsilonitalic_ϵ is uncharged. We could thus also regard the 3-state Potts transition as also an S3subscript𝑆3S_{3}italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT-symmetric transition between ℤ3subscriptℤ3\mathbb{Z}_{3}blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT SSB and trivial phases for S3subscript𝑆3S_{3}italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT symmetry. The additional ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry does not get spontaneously broken on either side of the transition.
  48. In the cases of interest in this paper, we want the pivotal structure to be spherical (and in fact unitary).
  49. The d𝑑ditalic_d-category B⁢𝒮𝐵𝒮B{\mathcal{S}}italic_B caligraphic_S contains a single object, and the endomorphism (d−1)𝑑1(d-1)( italic_d - 1 )-category of this object is the pivotal fusion (d−1)𝑑1(d-1)( italic_d - 1 )-category 𝒮𝒮{\mathcal{S}}caligraphic_S.
  50. R. Thorngren and Y. Wang,   (2019), arXiv:1912.02817 [hep-th] .
  51. F. A. Bais and J. K. Slingerland, Phys. Rev. B 79, 045316 (2009), arXiv:0808.0627 [cond-mat.mes-hall] .
Citations (23)

Summary

We haven't generated a summary for this paper yet.