Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

SymTFT out of equilibrium: from time crystals to braided drives and Floquet codes (2312.17176v2)

Published 28 Dec 2023 in cond-mat.str-el, cond-mat.quant-gas, quant-ph, and hep-th

Abstract: Symmetry Topological Field Theory (SymTFT) is a framework to capture universal features of quantum many-body systems by viewing them as a boundary of topological order in one higher dimension. This has yielded numerous insights in static low-energy settings. Here we study what SymTFT can reveal about nonequilibrium, focusing on one-dimensional (1D) periodically driven systems and their 2D SymTFTs. In driven settings, boundary conditions (BCs) can be dynamical and can apply both spatially and temporally. We show how this enters SymTFT via topological operators, which we then use to uncover several new results. These include revealing time crystals (TCs) as systems with symmetry-twisted temporal BCs, robust bulk ``dual TCs" in phases thought to be only boundary TCs, generating drive dualities, or identifying 2D Floquet codes as space-time duals to 1D systems with duality-twisted spatial BCs. We also show how, by making duality-twisted BCs dynamical, non-Abelian braiding of duality defects can enter SymTFT, leading to effects such as the exact pumping of symmetry charges between a system and its BCs. We illustrate our ideas for $\mathbb{Z}_2$-symmetric 1D systems, but our construction applies for any finite Abelian symmetry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Z. Nussinov and G. Ortiz, Ann. Phys. 324, 977 (2009a).
  2. Z. Nussinov and G. Ortiz, PNAS 106, 16944 (2009b).
  3. A. Kapustin and N. Seiberg, JHEP 2014, 1 (2014).
  4. B. Yoshida, Phys. Rev. B 93, 155131 (2016).
  5. E. Lake, arXiv:1802.07747 .
  6. J. McGreevy, Annu. Rev. Cond. Mat. Phys. 14, 57 (2023).
  7. S. Schafer-Nameki, arXiv:2305.18296 .
  8. A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
  9. A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).
  10. M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).
  11. P. Severa, JHEP 2002, 049 (2002).
  12. A. Kitaev and L. Kong, Commun. Math. Phys. 313, 351 (2012).
  13. R. Thorngren and Y. Wang, arXiv:1912.02817 .
  14. D. S. Freed and C. Teleman, arXiv:1806.00008 .
  15. D. Gaiotto and J. Kulp, JHEP 2021, 1 (2021).
  16. L. Bhardwaj and S. Schafer-Nameki, arXiv:2305.17159 .
  17. A. Chatterjee and X.-G. Wen, Phys. Rev. B 107, 155136 (2023).
  18. W. Ji and X.-G. Wen, Phys. Rev. Res. 2, 033417 (2020).
  19. S. D. Pace, arXiv:2308.05730 .
  20. R. Wen and A. C. Potter, arXiv:2311.00050 .
  21. S.-J. Huang and M. Cheng, arXiv:2310.16878 .
  22. L. Fleishman and P. W. Anderson, Phys. Rev. B 21, 2366 (1980).
  23. R. Nandkishore and D. A. Huse, Annu. Rev. Cond. Mat. Phys. 6, 15 (2015).
  24. E. Altman and R. Vosk, Annu. Rev. Cond. Mat. Phys. 6, 383 (2015).
  25. D. A. Abanin and Z. Papić, Ann. Phys. 529, 1700169 (2017).
  26. F. Alet and N. Laflorencie, C R Phys. 19, 498 (2018).
  27. F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).
  28. A. Shapere and F. Wilczek, Phys. Rev. Lett. 109, 160402 (2012).
  29. H. Watanabe and M. Oshikawa, Phys. Rev. Lett. 114, 251603 (2015).
  30. C. W. von Keyserlingk and S. L. Sondhi, Phys. Rev. B 93, 245145 (2016a).
  31. C. W. von Keyserlingk and S. L. Sondhi, Phys. Rev. B 93, 245146 (2016b).
  32. K. Sacha and J. Zakrzewski, Rep. Prog. Phys. 81, 016401 (2018).
  33. M. B. Hastings and J. Haah, Quantum 5, 564 (2021).
  34. C. Vuillot, arXiv:2110.05348 .
  35. H. Bombin, Phys. Rev. Lett. 105, 030403 (2010).
  36. M. Barkeshli and X.-L. Qi, Phys. Rev. X 2, 031013 (2012).
  37. Y.-Z. You and X.-G. Wen, Phys. Rev. B 86, 161107 (2012).
  38. A. Kapustin and N. Saulina, Nucl. Phys. B 845, 393–435 (2011).
  39. M. Levin, Phys. Rev. X 3, 021009 (2013).
  40. If a≠a¯𝑎¯𝑎a\neq\bar{a}italic_a ≠ over¯ start_ARG italic_a end_ARG the string is oriented i→j→𝑖𝑗i\to jitalic_i → italic_j and we abbreviate Wi→j(a)≡Wi⁢j(a)superscriptsubscript𝑊→𝑖𝑗𝑎superscriptsubscript𝑊𝑖𝑗𝑎W_{i\to j}^{(a)}\equiv W_{ij}^{(a)}italic_W start_POSTSUBSCRIPT italic_i → italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_a ) end_POSTSUPERSCRIPT ≡ italic_W start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_a ) end_POSTSUPERSCRIPT with Wj⁢i(a)=Wi⁢j(a¯)=Wi⁢j(a)⁣†superscriptsubscript𝑊𝑗𝑖𝑎superscriptsubscript𝑊𝑖𝑗¯𝑎superscriptsubscript𝑊𝑖𝑗𝑎†W_{ji}^{(a)}=W_{ij}^{(\bar{a})}=W_{ij}^{(a)\dagger}italic_W start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_a ) end_POSTSUPERSCRIPT = italic_W start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( over¯ start_ARG italic_a end_ARG ) end_POSTSUPERSCRIPT = italic_W start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_a ) † end_POSTSUPERSCRIPT. We terminate the Rep⁢GRep𝐺\text{Rep}\,GRep italic_G component of Wi⁢j(a)superscriptsubscript𝑊𝑖𝑗𝑎W_{ij}^{(a)}italic_W start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_a ) end_POSTSUPERSCRIPT on sites i𝑖iitalic_i and j𝑗jitalic_j while the G𝐺Gitalic_G component on links i~=⟨i,i+1⟩~𝑖𝑖𝑖1\tilde{i}=\langle i,i+1\rangleover~ start_ARG italic_i end_ARG = ⟨ italic_i , italic_i + 1 ⟩ and j~~𝑗\tilde{j}over~ start_ARG italic_j end_ARG of Bdynsubscript𝐵dynB_{\text{dyn}}italic_B start_POSTSUBSCRIPT dyn end_POSTSUBSCRIPT.
  41. E. Fradkin, J. Stat. Phys. 167, 427 (2017).
  42. G. Schutz, J. Phys. A: Math. Gen. 26, 4555 (1993).
  43. U. Grimm, J. Phys. A: Math. Gen. 35, L25–L30 (2002).
  44. Duality-twisted BCs can also have Tσ(2)superscriptsubscript𝑇𝜎2T_{\sigma}^{(2)}italic_T start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT further along Bdynsubscript𝐵dynB_{\text{dyn}}italic_B start_POSTSUBSCRIPT dyn end_POSTSUBSCRIPT Aasen et al. (2016), with same locality constraints from Tσ(1)superscriptsubscript𝑇𝜎1T_{\sigma}^{(1)}italic_T start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT.
  45. A. Y. Kitaev, Phys.-Uspekhi 44, 131 (2001).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com