Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higgs-Confinement Transitions in QCD from Symmetry Protected Topological Phases (2312.16898v3)

Published 28 Dec 2023 in hep-th, cond-mat.str-el, hep-lat, hep-ph, and nucl-th

Abstract: In gauge theories with fundamental matter there is typically no sharp way to distinguish confining and Higgs regimes, e.g. using generalized global symmetries acting on loop order parameters. It is standard lore that these two regimes are continuously connected, as has been explicitly demonstrated in certain lattice and continuum models. We point out that Higgsing and confinement sometimes lead to distinct symmetry protected topological (SPT) phases -- necessarily separated by a phase transition -- for ordinary global symmetries. We present explicit examples in 3+1 dimensions, obtained by adding elementary Higgs fields and Yukawa couplings to QCD while preserving parity P and time reversal T. In a suitable scheme, the confining phases of these theories are trivial SPTs, while their Higgs phases are characterized by non-trivial P- and T-invariant theta-angles $\theta_f, \theta_g = \pi$ for flavor or gravity background gauge fields, i.e. they are topological insulators or superconductors. Finally, we consider conventional three-flavor QCD (without elementary Higgs fields) at finite $U(1)_B$ baryon-number chemical potential $\mu_B$, which preserves P and T. At very large $\mu_B$, three-flavor QCD is known to be a completely Higgsed color superconductor that also spontaneously breaks $U(1)_B$. We argue that this high-density phase is in fact a gapless SPT, with a gravitational theta-angle $\theta_g = \pi$ that safely co-exists with the $U(1)_B$ Nambu-Goldstone boson. We explain why this SPT motivates unexpected transitions in the QCD phase diagram, as well as anomalous surface modes at the boundary of quark-matter cores inside neutron stars.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (164)
  1. S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications. Cambridge University Press, 8, 2013.
  2. T. Hansson, V. Oganesyan, and S. Sondhi, “Superconductors are topologically ordered,” Annals of Physics 313 no. 2, (Oct, 2004) 497–538. https://doi.org/10.1016%2Fj.aop.2004.05.006.
  3. K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10 (Oct, 1974) 2445–2459. https://link.aps.org/doi/10.1103/PhysRevD.10.2445.
  4. G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl. Phys. B 138 (1978) 1–25.
  5. A. M. Polyakov, “Thermal Properties of Gauge Fields and Quark Liberation,” Phys. Lett. B 72 (1978) 477–480.
  6. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  7. J. McGreevy, “Generalized Symmetries in Condensed Matter,” arXiv:2204.03045 [cond-mat.str-el].
  8. C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in Snowmass 2021. 5, 2022. arXiv:2205.09545 [hep-th].
  9. A. Kapustin and R. Thorngren, “Higher symmetry and gapped phases of gauge theories,” arXiv:1309.4721 [hep-th].
  10. Y. Tachikawa, “On gauging finite subgroups,” SciPost Phys. 8 no. 1, (2020) 015, arXiv:1712.09542 [hep-th].
  11. C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group Global Symmetries,” JHEP 02 (2019) 184, arXiv:1802.04790 [hep-th].
  12. F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
  13. T. D. Brennan, C. Cordova, and T. T. Dumitrescu, “Line Defect Quantum Numbers & Anomalies,” arXiv:2206.15401 [hep-th].
  14. D. G. Delmastro, J. Gomis, P.-S. Hsin, and Z. Komargodski, “Anomalies and symmetry fractionalization,” SciPost Phys. 15 no. 3, (2023) 079, arXiv:2206.15118 [hep-th].
  15. L. Susskind, “Lattice Models of Quark Confinement at High Temperature,” Phys. Rev. D 20 (1979) 2610–2618.
  16. Y. Aoki, G. Endrődi, Z. Fodor, S. D. Katz, and K. K. Szabó, “The order of the quantum chromodynamics transition predicted by the standard model of particle physics,” Nature 443 no. 7112, (Oct, 2006) 675–678. https://doi.org/10.1038/nature05120.
  17. A. Bazavov et al., “The chiral and deconfinement aspects of the QCD transition,” Phys. Rev. D 85 (2012) 054503, arXiv:1111.1710 [hep-lat].
  18. S. Raby, S. Dimopoulos, and L. Susskind, “Tumbling Gauge Theories,” Nucl. Phys. B 169 (1980) 373–383.
  19. T. Schäfer and F. Wilczek, “Continuity of quark and hadron matter,” Phys. Rev. Lett. 82 (May, 1999) 3956–3959. https://link.aps.org/doi/10.1103/PhysRevLett.82.3956.
  20. S. Cecotti and C. Vafa, “On classification of N=2 supersymmetric theories,” Commun. Math. Phys. 158 (1993) 569–644, arXiv:hep-th/9211097.
  21. N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426 (1994) 19–52, arXiv:hep-th/9407087. [Erratum: Nucl.Phys.B 430, 485–486 (1994)].
  22. E. Fradkin and S. H. Shenker, “Phase diagrams of lattice gauge theories with higgs fields,” Phys. Rev. D 19 (Jun, 1979) 3682–3697. https://link.aps.org/doi/10.1103/PhysRevD.19.3682.
  23. T. Banks and E. Rabinovici, “Finite Temperature Behavior of the Lattice Abelian Higgs Model,” Nucl. Phys. B 160 (1979) 349–379.
  24. S. Dimopoulos, S. Raby, and L. Susskind, “Light Composite Fermions,” Nucl. Phys. B 173 (1980) 208–228.
  25. K. A. Intriligator and N. Seiberg, “Lectures on supersymmetric gauge theories and electric-magnetic duality,” Nucl. Phys. B Proc. Suppl. 45BC (1996) 1–28, arXiv:hep-th/9509066.
  26. D. Gaiotto, Z. Komargodski, and J. Wu, “Curious Aspects of Three-Dimensional 𝒩=1𝒩1{\cal N}=1caligraphic_N = 1 SCFTs,” JHEP 08 (2018) 004, arXiv:1804.02018 [hep-th].
  27. F. Haldane, “Continuum dynamics of the 1-d heisenberg antiferromagnet: Identification with the o(3) nonlinear sigma model,” Physics Letters A 93 no. 9, (1983) 464–468. https://www.sciencedirect.com/science/article/pii/037596018390631X.
  28. I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Valence bond ground states in isotropic quantum antiferromagnets,” Communications in Mathematical Physics 115 no. 3, (Sep, 1988) 477–528. https://doi.org/10.1007/BF01218021.
  29. A. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys. Usp. 44 no. 10S, (2001) 131–136, arXiv:cond-mat/0010440.
  30. C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Phys. Rev. Lett. 95 (Nov, 2005) 226801. https://link.aps.org/doi/10.1103/PhysRevLett.95.226801.
  31. C. L. Kane and E. J. Mele, “Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95 (Sep, 2005) 146802. https://link.aps.org/doi/10.1103/PhysRevLett.95.146802.
  32. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells,” Science 314 no. 5806, (2006) 1133734.
  33. J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band structures,” Phys. Rev. B 75 (Mar, 2007) 121306. https://link.aps.org/doi/10.1103/PhysRevB.75.121306.
  34. L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98 (Mar, 2007) 106803. https://link.aps.org/doi/10.1103/PhysRevLett.98.106803.
  35. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78 (Nov, 2008) 195424. https://link.aps.org/doi/10.1103/PhysRevB.78.195424.
  36. A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, “Classification of topological insulators and superconductors in three spatial dimensions,” Phys. Rev. B 78 (Nov, 2008) 195125. https://link.aps.org/doi/10.1103/PhysRevB.78.195125.
  37. R. Roy, “Topological phases and the quantum spin hall effect in three dimensions,” Phys. Rev. B 79 (May, 2009) 195322. https://link.aps.org/doi/10.1103/PhysRevB.79.195322.
  38. A. Kitaev, “Periodic table for topological insulators and superconductors,” AIP Conf. Proc. 1134 no. 1, (2009) 22–30, arXiv:0901.2686 [cond-mat.mes-hall].
  39. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83 (Oct, 2011) 1057–1110. https://link.aps.org/doi/10.1103/RevModPhys.83.1057.
  40. S. Ryu, J. E. Moore, and A. W. W. Ludwig, “Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors,” Phys. Rev. B 85 (2012) 045104, arXiv:1010.0936 [cond-mat.str-el].
  41. F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, “Entanglement spectrum of a topological phase in one dimension,” Phys. Rev. B 81 no. 6, (2010) 064439, arXiv:0910.1811 [cond-mat.str-el].
  42. L. Fidkowski and A. Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83 no. 7, (2011) 075103, arXiv:1008.4138 [cond-mat.str-el].
  43. A. M. Turner, F. Pollmann, and E. Berg, “Topological phases of one-dimensional fermions: An entanglement point of view,” Phys. Rev. B 83 no. 7, (2011) 075102.
  44. X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in one-dimensional spin systems,” Phys. Rev. B 83 no. 3, (2011) 035107, arXiv:1008.3745 [cond-mat.str-el].
  45. N. Schuch, D. Perez-Garcia, and I. Cirac, “Classifying quantum phases using matrix product states and projected entangled pair states,” Phys. Rev. B 84 no. 16, (2011) 165139.
  46. X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Phys. Rev. B 87 no. 15, (2013) 155114, arXiv:1106.4772 [cond-mat.str-el].
  47. X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-Protected Topological Orders in Interacting Bosonic Systems,” Science 338 no. 6114, (2012) 1604–1606, arXiv:1301.0861 [cond-mat.str-el].
  48. T. Senthil, “Symmetry-protected topological phases of quantum matter,” Annual Review of Condensed Matter Physics 6 no. 1, (Mar, 2015) 299–324. https://doi.org/10.1146%2Fannurev-conmatphys-031214-014740.
  49. E. Witten, “Fermion Path Integrals And Topological Phases,” Rev. Mod. Phys. 88 no. 3, (2016) 035001, arXiv:1508.04715 [cond-mat.mes-hall].
  50. C. G. Callan, Jr. and J. A. Harvey, “Anomalies and Fermion Zero Modes on Strings and Domain Walls,” Nucl. Phys. B 250 (1985) 427–436.
  51. A. Kapustin, “Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology,” arXiv:1403.1467 [cond-mat.str-el].
  52. A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, “Fermionic Symmetry Protected Topological Phases and Cobordisms,” JHEP 12 (2015) 052, arXiv:1406.7329 [cond-mat.str-el].
  53. D. S. Freed and M. J. Hopkins, “Reflection positivity and invertible topological phases,” Geom. Topol. 25 (2021) 1165–1330, arXiv:1604.06527 [hep-th].
  54. D. S. Freed and G. W. Moore, “Setting the quantum integrand of M-theory,” Commun. Math. Phys. 263 (2006) 89–132, arXiv:hep-th/0409135.
  55. A. Kitaev, “Toward a topological classification of many-body quantum states with short-range entanglement.” {https://scgp.stonybrook.edu/video_portal/video.php?id=336}. Simons Center for Geometry and Physics, 2011.
  56. A. Kitaev, “On the classification of short-range entangled states.” {https://scgp.stonybrook.edu/video_portal/video.php?id=2010}. Simons Center for Geometry and Physics, 2013.
  57. A. Kitaev, “Lecture: Homotopy-Theoretic Approach to SPT Phases in Action: ℤ16subscriptℤ16\mathbb{Z}_{16}blackboard_Z start_POSTSUBSCRIPT 16 end_POSTSUBSCRIPT Classification of Three-Dimensional Superconductors,”. {http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015}.
  58. C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, “Contact Terms, Unitarity, and F-Maximization in Three-Dimensional Superconformal Theories,” JHEP 10 (2012) 053, arXiv:1205.4142 [hep-th].
  59. C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, “Comments on Chern-Simons Contact Terms in Three Dimensions,” JHEP 09 (2012) 091, arXiv:1206.5218 [hep-th].
  60. G. V. Dunne, “Aspects of Chern-Simons theory,” in Les Houches Summer School in Theoretical Physics, Session 69: Topological Aspects of Low-dimensional Systems. 7, 1998. arXiv:hep-th/9902115.
  61. X. Wen, Quantum Field Theory of Many-Body Systems:From the Origin of Sound to an Origin of Light and Electrons: From the Origin of Sound to an Origin of Light and Electrons. Oxford Graduate Texts. OUP Oxford, 2004. https://books.google.se/books?id=llnlrfdR4YgC.
  62. E. Fradkin, Field Theories of Condensed Matter Physics. Field Theories of Condensed Matter Physics. Cambridge University Press, 2013. https://books.google.se/books?id=x7_6MX4ye_wC.
  63. E. Witten, “Three lectures on topological phases of matter,” Riv. Nuovo Cim. 39 no. 7, (2016) 313–370, arXiv:1510.07698 [cond-mat.mes-hall].
  64. D. Tong, “Lectures on the Quantum Hall Effect,” 6, 2016. arXiv:1606.06687 [hep-th].
  65. J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University Press, Princeton, NJ, USA, 1992.
  66. L. Fidkowski, X. Chen, and A. Vishwanath, “Non-abelian topological order on the surface of a 3d topological superconductor from an exactly solved model,” Phys. Rev. X 3 (Nov, 2013) 041016. https://link.aps.org/doi/10.1103/PhysRevX.3.041016.
  67. C. Wang and T. Senthil, “Interacting fermionic topological insulators/superconductors in three dimensions,” Phys. Rev. B89 no. 19, (2014) 195124, arXiv:1401.1142 [cond-mat.str-el]. [Erratum: Phys. Rev.B91,no.23,239902(2015)].
  68. M. A. Metlitski, L. Fidkowski, X. Chen, and A. Vishwanath, “Interaction effects on 3D topological superconductors: surface topological order from vortex condensation, the 16 fold way and fermionic Kramers doublets,” arXiv:1406.3032 [cond-mat.str-el].
  69. E. Witten, “The ”Parity” Anomaly On An Unorientable Manifold,” Phys. Rev. B 94 no. 19, (2016) 195150, arXiv:1605.02391 [hep-th].
  70. T. T. Dumitrescu and P.-S. Hsin, “Higgs-Confinement Phase Transitions on Unorientable Manifolds.”. To appear.
  71. D. Weingarten, “Mass inequalities for quantum chromodynamics,” Phys. Rev. Lett. 51 (Nov, 1983) 1830–1833. https://link.aps.org/doi/10.1103/PhysRevLett.51.1830.
  72. C. Vafa and E. Witten, “Restrictions on Symmetry Breaking in Vector-Like Gauge Theories,” Nucl. Phys. B 234 (1984) 173–188.
  73. C. Vafa and E. Witten, “Parity conservation in quantum chromodynamics,” Phys. Rev. Lett. 53 (Aug, 1984) 535–536. https://link.aps.org/doi/10.1103/PhysRevLett.53.535.
  74. Y. Tachikawa and K. Yonekura, “Gauge interactions and topological phases of matter,” PTEP 2016 no. 9, (2016) 093B07, arXiv:1604.06184 [hep-th].
  75. S. Roberts, B. Yoshida, A. Kubica, and S. D. Bartlett, “Symmetry-protected topological order at nonzero temperature,” Phys. Rev. A 96 no. 2, (2017) 022306, arXiv:1611.05450 [quant-ph].
  76. R. Verresen, U. Borla, A. Vishwanath, S. Moroz, and R. Thorngren, “Higgs Condensates are Symmetry-Protected Topological Phases: I. Discrete Symmetries,” arXiv:2211.01376 [cond-mat.str-el].
  77. R. Thorngren, T. Rakovszky, R. Verresen, and A. Vishwanath, “Higgs Condensates are Symmetry-Protected Topological Phases: II. U⁢(1)𝑈1U(1)italic_U ( 1 ) Gauge Theory and Superconductors,” arXiv:2303.08136 [cond-mat.str-el].
  78. D. Gaiotto, Z. Komargodski, and N. Seiberg, “Time-reversal breaking in QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT, walls, and dualities in 2 + 1 dimensions,” JHEP 01 (2018) 110, arXiv:1708.06806 [hep-th].
  79. H. V. Kruis, I. P. McCulloch, Z. Nussinov, and J. Zaanen, “Geometry and the hidden order of luttinger liquids: The universality of squeezed space,” Phys. Rev. B 70 (Aug, 2004) 075109. https://link.aps.org/doi/10.1103/PhysRevB.70.075109.
  80. J. P. Kestner, B. Wang, J. D. Sau, and S. Das Sarma, “Prediction of a gapless topological haldane liquid phase in a one-dimensional cold polar molecular lattice,” Phys. Rev. B 83 (May, 2011) 174409. https://link.aps.org/doi/10.1103/PhysRevB.83.174409.
  81. A. Keselman and E. Berg, “Gapless symmetry-protected topological phase of fermions in one dimension,” Phys. Rev. B 91 (Jun, 2015) 235309. https://link.aps.org/doi/10.1103/PhysRevB.91.235309.
  82. N. Kainaris and S. T. Carr, “Emergent topological properties in interacting one-dimensional systems with spin-orbit coupling,” Phys. Rev. B 92 (Jul, 2015) 035139. https://link.aps.org/doi/10.1103/PhysRevB.92.035139.
  83. C. Wang and T. Senthil, “Time-reversal symmetric u⁢(1)𝑢1u(1)italic_u ( 1 ) quantum spin liquids,” Phys. Rev. X 6 (Mar, 2016) 011034. https://link.aps.org/doi/10.1103/PhysRevX.6.011034.
  84. N. Kainaris, R. A. Santos, D. B. Gutman, and S. T. Carr, “Interaction induced topological protection in one-dimensional conductors,” Fortschritte der Physik 65 no. 6-8, (Jan, 2017) 1600054. https://doi.org/10.1002%2Fprop.201600054.
  85. T. Scaffidi, D. E. Parker, and R. Vasseur, “Gapless symmetry-protected topological order,” Phys. Rev. X 7 (Nov, 2017) 041048. https://link.aps.org/doi/10.1103/PhysRevX.7.041048.
  86. P.-S. Hsin and A. Turzillo, “Symmetry-enriched quantum spin liquids in (3 + 1)d𝑑ditalic_d,” JHEP 09 (2020) 022, arXiv:1904.11550 [cond-mat.str-el].
  87. R. Verresen, R. Thorngren, N. G. Jones, and F. Pollmann, “Gapless Topological Phases and Symmetry-Enriched Quantum Criticality,” Phys. Rev. X 11 no. 4, (2021) 041059, arXiv:1905.06969 [cond-mat.str-el].
  88. R. Thorngren, A. Vishwanath, and R. Verresen, “Intrinsically gapless topological phases,” Phys. Rev. B 104 no. 7, (2021) 075132, arXiv:2008.06638 [cond-mat.str-el].
  89. A. N. Redlich, “Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions,” Phys. Rev. D29 (1984) 2366–2374.
  90. A. J. Niemi and G. W. Semenoff, “Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times,” Phys. Rev. Lett. 51 (1983) 2077.
  91. L. Alvarez-Gaume, S. Della Pietra, and G. W. Moore, “Anomalies and Odd Dimensions,” Annals Phys. 163 (1985) 288.
  92. F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”,” Phys. Rev. Lett. 61 (Oct, 1988) 2015–2018. https://link.aps.org/doi/10.1103/PhysRevLett.61.2015.
  93. T. Schäfer, “Phases of QCD,” arXiv:hep-ph/0509068.
  94. M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, “Color superconductivity in dense quark matter,” Rev. Mod. Phys. 80 (2008) 1455–1515, arXiv:0709.4635 [hep-ph].
  95. K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD,” Rept. Prog. Phys. 74 (2011) 014001, arXiv:1005.4814 [hep-ph].
  96. MUSES Collaboration, R. Kumar et al., “Theoretical and Experimental Constraints for the Equation of State of Dense and Hot Matter,” arXiv:2303.17021 [nucl-th].
  97. D. T. Son, “Superconductivity by long range color magnetic interaction in high density quark matter,” Phys. Rev. D 59 (1999) 094019, arXiv:hep-ph/9812287.
  98. M. G. Alford, J. Berges, and K. Rajagopal, “Unlocking color and flavor in superconducting strange quark matter,” Nucl. Phys. B 558 (1999) 219–242, arXiv:hep-ph/9903502.
  99. T. Schäfer and F. Wilczek, “Quark description of hadronic phases,” Phys. Rev. D 60 (1999) 074014, arXiv:hep-ph/9903503.
  100. A. Cherman, S. Sen, and L. G. Yaffe, “Anyonic particle-vortex statistics and the nature of dense quark matter,” Phys. Rev. D 100 no. 3, (2019) 034015, arXiv:1808.04827 [hep-th].
  101. A. Cherman, T. Jacobson, S. Sen, and L. G. Yaffe, “Higgs-confinement phase transitions with fundamental representation matter,” Phys. Rev. D 102 no. 10, (2020) 105021, arXiv:2007.08539 [hep-th].
  102. Z. Wan and J. Wang, “Higher anomalies, higher symmetries, and cobordisms III: QCD matter phases anew,” Nucl. Phys. B 957 (2020) 115016, arXiv:1912.13514 [hep-th].
  103. A. Cappelli, M. Huerta, and G. R. Zemba, “Thermal transport in chiral conformal theories and hierarchical quantum Hall states,” Nucl. Phys. B 636 (2002) 568–582, arXiv:cond-mat/0111437.
  104. M. Stone, “Gravitational Anomalies and Thermal Hall effect in Topological Insulators,” Phys. Rev. B 85 (2012) 184503, arXiv:1201.4095 [cond-mat.mes-hall].
  105. J. Wang, X.-G. Wen, and E. Witten, “A New SU(2) Anomaly,” J. Math. Phys. 60 no. 5, (2019) 052301, arXiv:1810.00844 [hep-th].
  106. Y.-A. Chen and P.-S. Hsin, “Exactly Solvable Lattice Hamiltonians and Gravitational Anomalies,” SciPost Phys. 14 (2023) 089, arXiv:2110.14644 [cond-mat.str-el].
  107. L. Fidkowski, J. Haah, and M. B. Hastings, “Gravitational anomaly of (3+1)-dimensional Z2 toric code with fermionic charges and fermionic loop self-statistics,” Phys. Rev. B 106 no. 16, (2022) 165135, arXiv:2110.14654 [cond-mat.str-el].
  108. A. N. Redlich, “Parity violation and gauge noninvariance of the effective gauge field action in three dimensions,” Phys. Rev. D 29 (May, 1984) 2366–2374. https://link.aps.org/doi/10.1103/PhysRevD.29.2366.
  109. A. J. Niemi and G. W. Semenoff, “Axial-anomaly-induced fermion fractionization and effective gauge-theory actions in odd-dimensional space-times,” Phys. Rev. Lett. 51 (Dec, 1983) 2077–2080. https://link.aps.org/doi/10.1103/PhysRevLett.51.2077.
  110. N. Seiberg and E. Witten, “Gapped Boundary Phases of Topological Insulators via Weak Coupling,” PTEP 2016 no. 12, (2016) 12C101, arXiv:1602.04251 [cond-mat.str-el].
  111. E. Witten, “Dyons of Charge e theta/2 pi,” Phys. Lett. B 86 (1979) 283–287.
  112. C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications I,” SciPost Phys. 8 no. 1, (2020) 001, arXiv:1905.09315 [hep-th].
  113. C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications II,” SciPost Phys. 8 no. 1, (2020) 002, arXiv:1905.13361 [hep-th].
  114. A. Kapustin and L. Spodyneiko, “Higher-dimensional generalizations of Berry curvature,” Phys. Rev. B 101 no. 23, (2020) 235130, arXiv:2001.03454 [cond-mat.str-el].
  115. P.-S. Hsin, A. Kapustin, and R. Thorngren, “Berry Phase in Quantum Field Theory: Diabolical Points and Boundary Phenomena,” Phys. Rev. B 102 (2020) 245113, arXiv:2004.10758 [cond-mat.str-el].
  116. A. Kapustin and L. Spodyneiko, “Higher-dimensional generalizations of the Thouless charge pump,” arXiv:2003.09519 [cond-mat.str-el].
  117. X. Wen, M. Qi, A. Beaudry, J. Moreno, M. J. Pflaum, D. Spiegel, A. Vishwanath, and M. Hermele, “Flow of higher Berry curvature and bulk-boundary correspondence in parametrized quantum systems,” Phys. Rev. B 108 no. 12, (2023) 125147, arXiv:2112.07748 [cond-mat.str-el].
  118. Y. Choi and K. Ohmori, “Higher Berry phase of fermions and index theorem,” JHEP 09 (2022) 022, arXiv:2205.02188 [hep-th].
  119. X. Chen, Y.-M. Lu, and A. Vishwanath, “Symmetry-protected topological phases from decorated domain walls,” Nature Communications 5 no. 1, (Mar, 2014) 3507. https://doi.org/10.1038/ncomms4507.
  120. D. Gaiotto and T. Johnson-Freyd, “Symmetry Protected Topological phases and Generalized Cohomology,” JHEP 05 (2019) 007, arXiv:1712.07950 [hep-th].
  121. C. Córdova, K. Ohmori, S.-H. Shao, and F. Yan, “Decorated ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry defects and their time-reversal anomalies,” Phys. Rev. D 102 no. 4, (2020) 045019, arXiv:1910.14046 [hep-th].
  122. I. Hason, Z. Komargodski, and R. Thorngren, “Anomaly Matching in the Symmetry Broken Phase: Domain Walls, CPT, and the Smith Isomorphism,” SciPost Phys. 8 no. 4, (2020) 062, arXiv:1910.14039 [hep-th].
  123. Q.-R. Wang, S.-Q. Ning, and M. Cheng, “Domain Wall Decorations, Anomalies and Spectral Sequences in Bosonic Topological Phases,” arXiv:2104.13233 [cond-mat.str-el].
  124. S. Ryu, J. E. Moore, and A. W. W. Ludwig, “Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors,” Phys. Rev. B 85 (Jan, 2012) 045104. https://link.aps.org/doi/10.1103/PhysRevB.85.045104.
  125. M. Srednicki, Quantum Field Theory. Cambridge University Press, 2007. https://books.google.se/books?id=LDbNjwEACAAJ.
  126. G. Volovik, “The gravitational-topological chern-simons term in a film of superfluid 3ha,” Soviet Journal of Experimental and Theoretical Physics Letters (01, 1990) .
  127. N. Read and D. Green, “Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall effect,” Phys. Rev. B 61 (Apr, 2000) 10267–10297. https://link.aps.org/doi/10.1103/PhysRevB.61.10267.
  128. Z. Wang, X.-L. Qi, and S.-C. Zhang, “Topological field theory and thermal responses of interacting topological superconductors,” Phys. Rev. B 84 (Jul, 2011) 014527. https://link.aps.org/doi/10.1103/PhysRevB.84.014527.
  129. M. Stone, “Gravitational anomalies and thermal hall effect in topological insulators,” Phys. Rev. B 85 (May, 2012) 184503. https://link.aps.org/doi/10.1103/PhysRevB.85.184503.
  130. H. Sumiyoshi and S. Fujimoto, “Quantum thermal hall effect in a time-reversal-symmetry-broken topological superconductor in two dimensions: Approach from bulk calculations,” Journal of the Physical Society of Japan 82 no. 2, (Feb, 2013) 023602. https://doi.org/10.7566%2Fjpsj.82.023602.
  131. P. Bonderson, C. Nayak, and X.-L. Qi, “A time-reversal invariant topological phase at the surface of a 3D topological insulator,” J. Stat. Mech. 1309 (2013) P09016, arXiv:1306.3230 [cond-mat.str-el].
  132. X. Chen, L. Fidkowski, and A. Vishwanath, “Symmetry enforced non-abelian topological order at the surface of a topological insulator,” Phys. Rev. B 89 (Apr, 2014) 165132. https://link.aps.org/doi/10.1103/PhysRevB.89.165132.
  133. C. Cordova, P.-S. Hsin, and N. Seiberg, “Global Symmetries, Counterterms, and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups,” SciPost Phys. 4 no. 4, (2018) 021, arXiv:1711.10008 [hep-th].
  134. C. Córdova, P.-S. Hsin, and N. Seiberg, “Time-Reversal Symmetry, Anomalies, and Dualities in (2+1)d𝑑ditalic_d,” SciPost Phys. 5 no. 1, (2018) 006, arXiv:1712.08639 [cond-mat.str-el].
  135. M. Cheng and D. J. Williamson, “Relative anomaly in ( 1+1 )d rational conformal field theory,” Phys. Rev. Res. 2 no. 4, (2020) 043044, arXiv:2002.02984 [cond-mat.str-el].
  136. M. Barkeshli, Y.-A. Chen, P.-S. Hsin, and N. Manjunath, “Classification of (2+1)D invertible fermionic topological phases with symmetry,” Phys. Rev. B 105 no. 23, (2022) 235143, arXiv:2109.11039 [cond-mat.str-el].
  137. D. Aasen, P. Bonderson, and C. Knapp, “Torsorial actions on g-crossed braided tensor categories,” 2022.
  138. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” arXiv:2204.09025 [hep-th].
  139. P.-S. Hsin and N. Seiberg, “Level/rank Duality and Chern-Simons-Matter Theories,” JHEP 09 (2016) 095, arXiv:1607.07457 [hep-th].
  140. C. Córdova and T. T. Dumitrescu, “Candidate Phases for SU(2) Adjoint QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT with Two Flavors from 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 Supersymmetric Yang-Mills Theory,” arXiv:1806.09592 [hep-th].
  141. P.-S. Hsin, W. Ji, and C.-M. Jian, “Exotic invertible phases with higher-group symmetries,” SciPost Phys. 12 no. 2, (2022) 052, arXiv:2105.09454 [cond-mat.str-el].
  142. T. D. Brennan and K. Intriligator, “Anomalies of 4d S⁢p⁢i⁢nG𝑆𝑝𝑖subscript𝑛𝐺Spin_{G}italic_S italic_p italic_i italic_n start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT Theories,” arXiv:2312.04756 [hep-th].
  143. D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg, “Theta, Time Reversal, and Temperature,” JHEP 05 (2017) 091, arXiv:1703.00501 [hep-th].
  144. R. Argurio, M. Bertolini, F. Mignosa, and P. Niro, “Charting the phase diagram of QCD33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” JHEP 08 (2019) 153, arXiv:1905.01460 [hep-th].
  145. A. Armoni, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, “Metastable vacua in large-N QCD33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” JHEP 01 (2020) 004, arXiv:1905.01797 [hep-th].
  146. A. Roberge and N. Weiss, “Gauge Theories With Imaginary Chemical Potential and the Phases of QCD,” Nucl. Phys. B 275 (1986) 734–745.
  147. M. G. Alford, A. Kapustin, and F. Wilczek, “Imaginary chemical potential and finite fermion density on the lattice,” Phys. Rev. D 59 (1999) 054502, arXiv:hep-lat/9807039.
  148. P. de Forcrand, “Simulating QCD at finite density,” PoS LAT2009 (2009) 010, arXiv:1005.0539 [hep-lat].
  149. K. Nagata, “Finite-density lattice qcd and sign problem: Current status and open problems,” Progress in Particle and Nuclear Physics 127 (2022) 103991. https://www.sciencedirect.com/science/article/pii/S0146641022000497.
  150. M. G. Alford, K. Rajagopal, and F. Wilczek, “Color flavor locking and chiral symmetry breaking in high density QCD,” Nucl. Phys. B 537 (1999) 443–458, arXiv:hep-ph/9804403.
  151. R. L. Jaffe, “Perhaps a Stable Dihyperon,” Phys. Rev. Lett. 38 (1977) 195–198. [Erratum: Phys.Rev.Lett. 38, 617 (1977)].
  152. Belle Collaboration, B. H. Kim et al., “Search for an H𝐻Hitalic_H-dibaryon with mass near 2⁢mΛ2subscript𝑚Λ2m_{\Lambda}2 italic_m start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT in Υ⁢(1⁢S)Υ1𝑆\Upsilon(1S)roman_Υ ( 1 italic_S ) and Υ⁢(2⁢S)Υ2𝑆\Upsilon(2S)roman_Υ ( 2 italic_S ) decays,” Phys. Rev. Lett. 110 no. 22, (2013) 222002, arXiv:1302.4028 [hep-ex].
  153. BaBar Collaboration, J. P. Lees et al., “Search for a Stable Six-Quark State at BABAR,” Phys. Rev. Lett. 122 no. 7, (2019) 072002, arXiv:1810.04724 [hep-ex].
  154. J. R. Green, A. D. Hanlon, P. M. Junnarkar, and H. Wittig, “Weakly bound H𝐻Hitalic_H dibaryon from SU(3)-flavor-symmetric QCD,” Phys. Rev. Lett. 127 no. 24, (2021) 242003, arXiv:2103.01054 [hep-lat].
  155. A. P. Balachandran, A. Barducci, F. Lizzi, V. G. J. Rodgers, and A. Stern, “A Doubly Strange Dibaryon in the Chiral Model,” Phys. Rev. Lett. 52 (1984) 887.
  156. I. R. Klebanov and K. M. Westerberg, “A Simple description of strange dibaryons in the Skyrme model,” Phys. Rev. D 53 (1996) 2804–2808, arXiv:hep-ph/9508279.
  157. R. D. Pisarski and D. H. Rischke, “A First order transition to, and then parity violation in, a color superconductor,” Phys. Rev. Lett. 83 (1999) 37–40, arXiv:nucl-th/9811104.
  158. R. D. Pisarski, “Critical line for H superfluidity in strange quark matter?,” Phys. Rev. C 62 (2000) 035202, arXiv:nucl-th/9912070.
  159. G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, “From hadrons to quarks in neutron stars: a review,” Rept. Prog. Phys. 81 no. 5, (2018) 056902, arXiv:1707.04966 [astro-ph.HE].
  160. M. G. Alford, S. Han, and K. Schwenzer, “Signatures for quark matter from multi-messenger observations,” J. Phys. G 46 no. 11, (2019) 114001, arXiv:1904.05471 [nucl-th].
  161. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A. Vuorinen, “Evidence for quark-matter cores in massive neutron stars,” Nature Physics 16 no. 9, (Sep, 2020) 907–910. https://doi.org/10.1038/s41567-020-0914-9.
  162. J. J. Li, A. Sedrakian, and M. Alford, “Ultracompact hybrid stars consistent with multimessenger astrophysics,” Phys. Rev. D 107 no. 2, (2023) 023018, arXiv:2207.09798 [astro-ph.HE].
  163. J. J. Li, A. Sedrakian, and M. Alford, “Relativistic Hybrid Stars with Sequential First-order Phase Transitions in Light of Multimessenger Constraints,” Astrophys. J. 944 no. 2, (2023) 206, arXiv:2301.10940 [astro-ph.HE].
  164. Graduate Texts in Contemporary Physics. Springer New York, 2012. https://books.google.com/books?id=5u7jBwAAQBAJ.

Summary

We haven't generated a summary for this paper yet.