Higgs Phases and Boundary Criticality (2404.17001v1)
Abstract: Motivated by recent work connecting Higgs phases to symmetry protected topological (SPT) phases, we investigate the interplay of gauge redundancy and global symmetry in lattice gauge theories with Higgs fields in the presence of a boundary. The core conceptual point is that a global symmetry associated to a Higgs field, which is pure-gauge in a closed system, acts physically at the boundary under boundary conditions which allow electric flux to escape the system. We demonstrate in both Abelian and non-Abelian models that this symmetry is spontaneously broken in the Higgs regime, implying the presence of gapless edge modes. Starting with the U(1) Abelian Higgs model in 4D, we demonstrate a boundary phase transition in the 3D XY universality class separating the bulk Higgs and confining regimes. Varying the boundary coupling while preserving the symmetries shifts the location of the boundary phase transition. We then consider non-Abelian gauge theories with fundamental and group-valued Higgs matter, and identify the analogous non-Abelian global symmetry acting on the boundary generated by the total color charge. For SU($N$) gauge theory with fundamental Higgs matter we argue for a boundary phase transition in the O($2N$) universality class, verified numerically for $N=2,3$. For group-valued Higgs matter, the boundary theory is a principal chiral model exhibiting chiral symmetry breaking. We further demonstrate this mechanism in theories with higher-form Higgs fields. We show how the higher-form matter symmetry acts at the boundary and can spontaneously break, exhibiting a boundary confinement-deconfinement transition. We also study the electric-magnetic dual theory, demonstrating a dual magnetic defect condensation transition at the boundary. We discuss some implications and extensions of these findings and what they may imply for the relation between Higgs and SPT phases.
- F. J. Wegner, Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters, J. Math. Phys. 12, 2259 (1971).
- K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974).
- E. Lake, Higher-form symmetries and spontaneous symmetry breaking (2018), arxiv:1802.07747 .
- L. V. Delacrétaz, D. M. Hofman, and G. Mathys, Superfluids as higher-form anomalies, SciPost Physics 8, 047 (2020).
- J. McGreevy, Generalized Symmetries in Condensed Matter, Annual Review of Condensed Matter Physics 14, 57 (2023).
- F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13, 321 (1964).
- P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13, 508 (1964).
- G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13, 585 (1964).
- K. Osterwalder and E. Seiler, Gauge field theories on a lattice, Annals of Physics 110, 440 (1978).
- E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields, Phys. Rev. D 19, 3682 (1979).
- J. Greensite, An Introduction to the Confinement Problem, 2nd ed. (Springer Cham, 1983).
- W. Caudy and J. Greensite, Ambiguity of spontaneously broken gauge symmetry, Phys. Rev. D 78, 025018 (2008).
- A. Cherman, S. Sen, and L. G. Yaffe, Anyonic particle-vortex statistics and the nature of dense quark matter, Phys. Rev. D 100, 034015 (2019).
- K. Fredenhagen and M. Marcu, Confinement criterion for QCD with dynamical quarks, Phys. Rev. Lett. 56, 223 (1986).
- T. Kennedy and C. King, Spontaneous symmetry breakdown in the abelian Higgs model, Commun.Math. Phys. 104, 327 (1986).
- J. B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51, 659 (1979).
- M. Creutz, Quarks, Gluons and Lattices (Cambridge University Press, Cambridge, 1984).
- T. Banks, R. Myerson, and J. Kogut, Phase transitions in Abelian lattice gauge theories, Nuclear Physics B 129, 493 (1977).
- R. Savit, Duality in field theory and statistical systems, Rev. Mod. Phys. 52, 453 (1980).
- R. Savit, Duality transformations for general abelian systems, Nuclear Physics B 200, 233 (1982).
- K. Drühl and H. Wagner, Algebraic formulation of duality transformations for abelian lattice models, Annals of Physics 141, 225 (1982).
- A. P. Gottlob and M. Hasenbusch, Critical behaviour of the 3D XY-model: A Monte Carlo study, Physica A: Statistical Mechanics and its Applications 201, 593 (1993).
- T. H. Hansson, V. Oganesyan, and S. L. Sondhi, Superconductors are topologically ordered, Annals of Physics 313, 497 (2004).
- A. M. Polyakov, Gauge Fields and Strings (Routledge, London, 2017).
- J. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).
- L. Susskind and J. Kogut, XIV. New ideas about confinement, Physics Reports 23, 348 (1976).
- K. Kanaya and S. Kaya, Critical exponents of a three-dimensional O(4) spin model, Phys. Rev. D 51, 2404 (1995).
- G. Sordi and A.-M. S. Tremblay, Introducing the concept of Widom line in the QCD phase diagram (2023), arxiv:2312.12401 .
- S. Chandrasekharan and U. J. Wiese, An introduction to chiral symmetry on the lattice, Progress in Particle and Nuclear Physics 53, 373 (2004).
- J. B. Kogut, M. Snow, and M. Stone, Mean field and Monte Carlo studies of SU(N) chiral models in three dimensions, Nuclear Physics B 200, 211 (1982).
- L. D. Faddeev and N. Y. Reshetikhin, Integrability of the principal chiral field model in 1 + 1 dimension, Annals of Physics 167, 227 (1986).
- F. Kos, D. Poland, and D. Simmons-Duffin, Bootstrapping the O(N) Vector Models, J. High Energ. Phys. 2014 (6), 91.
- L.-F. Li, Group theory of the spontaneously broken gauge symmetries, Phys. Rev. D 9, 1723 (1974).
- L. Zou, Y.-C. He, and C. Wang, Stiefel Liquids: Possible Non-Lagrangian Quantum Criticality from Intertwined Orders, Phys. Rev. X 11, 031043 (2021).
- M. Henneaux and C. Teitelboim, P-Form electrodynamics, Foundations of Physics 16, 593 (1986).
- C. Teitelboim, Gauge invariance for extended objects, Physics Letters B 167, 63 (1986).
- D. K. Wise, P-form electromagnetism on discrete spacetimes*, Class. Quantum Grav. 23, 5129 (2006).
- C. Omero, P. A. Marchetti, and A. Maritan, Gauge differential form theories on the lattice, J. Phys. A: Math. Gen. 16, 1465 (1983).
- M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9, 2273 (1974).
- R. L. Davis and E. P. S. Shellard, Global strings and superfluid vortices, Phys. Rev. Lett. 63, 2021 (1989).
- M. Franz, Vortex-boson duality in four space-time dimensions, EPL 77, 47005 (2007).
- K. T. K. Chung and M. J. P. Gingras, 2-Form U(1) Spin Liquids: Classical Model and Quantum Aspects (2023), arxiv:2310.17607 .
- R. I. Nepomechie, Magnetic monopoles from antisymmetric tensor gauge fields, Phys. Rev. D 31, 1921 (1985).
- S.-J. Rey, Higgs mechanism for Kalb-Ramond gauge field, Phys. Rev. D 40, 3396 (1989).
- P. Orland, Instantons and disorder in antisymmetric tensor gauge fields, Nuclear Physics B 205, 107 (1982).
- R. B. Pearson, Phase structure of antisymmetric tensor gauge fields, Phys. Rev. D 26, 2013 (1982).
- A. M. Polyakov, Compact gauge fields and the infrared catastrophe, Physics Letters B 59, 82 (1975).
- F. Quevedo and C. A. Trugenberger, Condensation of p-Branes and Generalized Higgs/Confinement Duality, Int. J. Mod. Phys. A 12, 1227 (1997a).
- F. Quevedo and C. A. Trugenberger, Phases of antisymmetric tensor field theories, Nuclear Physics B 501, 143 (1997b).
- N. Iqbal and J. McGreevy, Mean string field theory: Landau-Ginzburg theory for 1-form symmetries, SciPost Physics 13, 114 (2022).
- T. Sulejmanpasic and C. Gattringer, Abelian gauge theories on the lattice: Theta-terms and compact gauge theory with(out) monopoles, Nuclear Physics B 943, 114616 (2019).
- H. Pfeiffer, Higher gauge theory and a non-Abelian generalization of 2-form electrodynamics, Annals of Physics 308, 447 (2003).
- J. C. Baez and J. Huerta, An invitation to higher gauge theory, Gen Relativ Gravit 43, 2335 (2011).
- S.-J. Rey and F. Sugino, A Nonperturbative Proposal for Nonabelian Tensor Gauge Theory and Dynamical Quantum Yang-Baxter Maps (2010), arxiv:1002.4636 .
- A. E. Lipstein and R. A. Reid-Edwards, Lattice gerbe theory, J. High Energ. Phys. 2014 (9), 34.
- Y. D. Mercado, C. Gattringer, and A. Schmidt, Surface worm algorithm for abelian Gauge–Higgs systems on the lattice, Computer Physics Communications 184, 1535 (2013a).
- Y. D. Mercado, C. Gattringer, and A. Schmidt, Dual Lattice Simulation of the Abelian Gauge-Higgs Model at Finite Density: An Exploratory Proof of Concept Study, Phys. Rev. Lett. 111, 141601 (2013b).
- A. Schmidt, Y. D. Mercado, and C. Gattringer, Monte Carlo simulation of abelian gauge-Higgs lattice models using dual representation (2012), arxiv:1211.1573 .
- A. Pelissetto and E. Vicari, Multicomponent compact Abelian-Higgs lattice models, Phys. Rev. E 100, 042134 (2019).
- C. Bonati, A. Pelissetto, and E. Vicari, Global symmetry breaking in gauge theories: The case of multiflavor scalar chromodynamics (2021a), arxiv:2110.05341 .
- C. Bonati, A. Pelissetto, and E. Vicari, Breaking of the gauge symmetry in lattice gauge theories, Phys. Rev. Lett. 127, 091601 (2021b).
- C. Bonati, A. Pelissetto, and E. Vicari, Critical behaviors of lattice U(1) gauge models and three-dimensional Abelian-Higgs gauge field theory, Phys. Rev. B 105, 085112 (2022a).
- C. Bonati, A. Pelissetto, and E. Vicari, Scalar gauge-Higgs models with discrete Abelian symmetry groups, Phys. Rev. E 105, 054132 (2022b).
- B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131 (2016).
- S. D. Pace and X.-G. Wen, Exact emergent higher-form symmetries in bosonic lattice models (2023), arxiv:2301.05261 .
- A. Hatcher, Algebraic Topology (Cambridge University Press, 2002).